﻿ 磁场作用下Oldroyd-B流体的非稳态驻点流动 Unsteady Stagnation-Point Flow of Oldroyd-B Fluid along a Stretching Sheet with Magnetic Field

Modern Physics
Vol. 11  No. 01 ( 2021 ), Article ID: 39653 , 8 pages
10.12677/MP.2021.111001

1北京建筑大学，北京

2建筑结构与环境修复功能材料北京市重点实验室，北京

Oldroyd-B流体，非稳态驻点流动，磁场，DPTEM-BF方法

Unsteady Stagnation-Point Flow of Oldroyd-B Fluid along a Stretching Sheet with Magnetic Field

Yu Bai1,2*, Qing Wang1,2, Yan Zhang1,2

1Beijing University of Civil Engineering and Architecture, Beijing

2Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing

Received: Oct. 19th, 2020; accepted: Dec. 28th, 2020; published: Jan. 5th, 2021

ABSTRACT

This paper examines the influence of magnetic field on unsteady stagnation-point flow of Oldroyd-B fluid towards a stretching sheet. Suitable similarity transformations are put into use to yield the ordinary differential equation, which are dealt with double-parameter transformation expansion method with base function method (DPTEM-BF). Impacts of various physical parameters on the velocity field are explored via graphs. It is noteworthy that as relaxation time parameter enlarges, the viscous force of fluid increases, which causes larger resistance to fluid flow. The increase of retardation time parameter increases both the velocity and momentum boundary layer thickness. Larger magnetic parameter corresponds to the larger Lorentz force, which impedes fluid flow and thus slows it down.

Keywords:Oldroyd-B Fluid, Unsteady Stagnation-Point Flow, Magnetic Field, DPTEM-BF Method

1. 引言

2. 数学模型

Figure 1. The physical flow diagram

Oldroyd-B流体的非稳态驻点流动控制方程为：

$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ (1)

$\begin{array}{c}\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=-{\lambda }_{1}\left(\frac{{\partial }^{2}u}{\partial {t}^{2}}+2u\frac{{\partial }^{2}u}{\partial x\partial t}+2v\frac{{\partial }^{2}u}{\partial y\partial t}+{u}^{2}\frac{{\partial }^{2}u}{\partial {x}^{2}}+2uv\frac{{\partial }^{2}u}{\partial x\partial y}+{v}^{2}\frac{{\partial }^{2}u}{\partial {y}^{2}}\right)\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}+\nu \frac{{\partial }^{2}u}{\partial {y}^{2}}+{\lambda }_{2}\nu \left(\frac{{\partial }^{3}u}{\partial {y}^{2}\partial t}+v\frac{{\partial }^{3}u}{\partial {y}^{3}}+u\frac{{\partial }^{3}u}{\partial x\partial {y}^{2}}-\frac{\partial u}{\partial x}\frac{{\partial }^{2}u}{\partial {y}^{2}}-\frac{\partial u}{\partial y}\frac{{\partial }^{2}v}{\partial {y}^{2}}\right)\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{+}\frac{\partial {u}_{e}}{\partial t}+{u}_{e}\frac{\partial {u}_{e}}{\partial x}+{\lambda }_{1}{u}_{e}^{2}\frac{{\partial }^{2}{u}_{e}}{\partial {x}^{2}}-\frac{\sigma {B}_{0}^{2}}{\rho }\left[u-{u}_{e}+{\lambda }_{1}\left(\frac{\partial u}{\partial t}+v\frac{\partial u}{\partial y}-\frac{\partial {u}_{e}}{\partial t}\right)\right]\end{array}$ (2)

$y=0$ 时， $u={u}_{w}\left(x,t\right)=\frac{bx}{1-at}$$v=0$ (3)

$y\to \infty$ 时， $u={u}_{e}\left(x,t\right)=\frac{cx}{1-at}$ (4)

$u=\frac{bx}{\left(1-at\right)}{f}^{\prime }\left(\eta \right),v=-\sqrt{\frac{\nu b}{\left(1-at\right)}}f\left(\eta \right),\eta =\sqrt{\frac{b}{\nu \left(1-at\right)}}y,\psi =\sqrt{\frac{\nu b}{\left(1-at\right)}}xf\left(\eta \right)$ (5)

$\begin{array}{l}S\left({f}^{\prime }+\frac{1}{2}{f}^{″}\eta \right)+{\left({f}^{\prime }\right)}^{2}-f{f}^{″}+{\beta }_{1}\left\{{S}^{2}\left(2{f}^{\prime }+\frac{7}{4}{f}^{″}\eta +\frac{1}{4}{f}^{‴}{\eta }^{2}\right)+2S\left[{\left({f}^{\prime }\right)}^{2}+\frac{1}{2}{f}^{\prime }{f}^{″}\eta \right]\\ \text{ }-S\left(3f{f}^{″}+f{f}^{‴}\eta \right)-2f{f}^{\prime }{f}^{″}+{f}^{2}{f}^{‴}\right\}-{f}^{‴}-{\beta }_{2}\left[S\left(2{f}^{‴}+\frac{1}{2}{f}^{iv}\eta \right)-f{f}^{iv}+{\left({f}^{″}\right)}^{2}\right]\\ \text{ }-AS-{A}^{2}+M\left\{\left({f}^{\prime }-A\right)+{\beta }_{1}\left[S\left({f}^{\prime }+\frac{1}{2}{f}^{″}\eta \right)-f{f}^{″}-SA\right]\right\}\end{array}$ (6)

$\eta =0$ 时， $f\left(0\right)=0$${f}^{\prime }\left(0\right)=1$ (7)

$\eta \to \infty$ 时， ${f}^{\prime }\left(\infty \right)=A$ (8)

3. DPTEM-BF方法求解

$f\left(\eta \right)={\epsilon }^{4}F\left(\xi \right)+f\left(0\right)+{f}^{\prime }\left(0\right)\eta +\frac{{f}^{″}\left(0\right)}{2!}{\eta }^{2}+\frac{{f}^{‴}\left(0\right)}{3!}{\eta }^{3}$$\xi ={\epsilon }^{-1}\eta$ (9)

${f}^{″}\left(0\right)={a}_{1}$${f}^{‴}\left(0\right)={a}_{2}$ ，其中a1，a2均为未知常数，F(ξ)为变量ξ的函数。

$F\left(0\right)=0$${F}^{\prime }\left(0\right)=0$${F}^{″}\left(0\right)=0$${F}^{‴}\left(0\right)=0$ (10)

$F\left(\xi \right)={F}_{0}\left(\xi \right)+\underset{i=1}{\overset{\infty }{\sum }}{F}_{i}\left(\xi \right){\epsilon }^{i}$ (11)

${F}_{i}\left(0\right)=0$${{F}^{\prime }}_{i}\left(0\right)=0$${F}_{i}{}^{\prime \text{​}\prime }\left(0\right)=0$${F}_{i}{}^{\prime \text{​}\prime \text{​}\prime }\left(0\right)=0$$i=0,\text{1},\text{2},\text{3,}\cdots$ (12)

$f\left(\eta \right)\approx {f}_{{N}_{1},{N}_{2}}\left(\eta \right)={f}_{0,0}\left(\eta \right)+\underset{j=3}{\overset{{N}_{1}}{\sum }}\underset{i=1}{\overset{{N}_{2}}{\sum }}{a}_{ij}{f}_{i,j}\left(\eta \right)={f}_{0,0}\left(\eta \right)+\underset{j=3}{\overset{{N}_{1}}{\sum }}\underset{i=1}{\overset{{N}_{2}}{\sum }}{a}_{ij}{\eta }^{j}{\text{e}}^{i{a}_{0}\eta }$ (13)

${f}_{0,0}\left(\eta \right)={m}_{1}+s\eta -{m}_{1}{\text{e}}^{{a}_{0}\eta }+\left(1-s+{a}_{0}{m}_{1}\right)\eta {\text{e}}^{{a}_{0}\eta }+{m}_{2}{\eta }^{2}{\text{e}}^{{a}_{0}\eta }$ (14)

${N}_{\text{1}}={N}_{\text{2}}=\text{3}$ ，其中m1，m2，a0，a13，a23，a33为假设的未知数，最后使用牛顿迭代法便可以计算出每个未知参数的值，将其带入函数f(η)的表达式，就可以得到原微分方程的近似解析解。

4. 结果与讨论

Table 1. Comparison of − f ″ ( 0 ) with different values of S while β 1 = β 2 = A = M = 0

Figure 2. Influence of β1 on the velocity field ${f}^{\prime }\left( \eta \right)$

Figure 3. Influence of β2 on the velocity field ${f}^{\prime }\left( \eta \right)$

Figure 4. Influence of S on the velocity field ${f}^{\prime }\left( \eta \right)$

Figure 5. Influence of A on the velocity field ${f}^{\prime }\left( \eta \right)$

Figure 6. Influence of M on the velocity field ${f}^{\prime }\left( \eta \right)$

5. 总结

Unsteady Stagnation-Point Flow of Oldroyd-B Fluid along a Stretching Sheet with Magnetic Field[J]. 现代物理, 2021, 11(01): 1-8. https://doi.org/10.12677/MP.2021.111001

1. 1. Khan, M., Mahmood, S. and Fetecau, C. (2009) New Exact Solutions for Magnetohydrodynamic Flows of an Oldroyd-B Fluid. Zeitschrift fur AngewandteMathematik und Physik, 60, 1206-1219. https://doi.org/10.1007/s00033-008-8029-7

2. 2. Hayat, T., Ashraf, M.B., Al-Mezel, S. and Shehzad, S.A. (2015) Mixed Convection Flow of an Oldroyd-B Fluid with Power Law Heat Flux and Heat Source. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 423-430. https://doi.org/10.1007/s40430-014-0165-8

3. 3. Ullah, S., Khan, N.A., Bajwa, S., Khan, N.A., Tanveer, M. and Liaqat, K. (2017) Some Exact Solutions for the Rotational Flow of Oldroyd-B Fluid between Two Circular Cylinders. Advances in Mechanical Engineering, 9, 1. https://doi.org/10.1177/1687814017724702

4. 4. Alshomrani, A.S., Salem, A., Irfan, M. and Khan, M. (2018) Chemically Reactive Flow and Heat Transfer of Magnetite Oldroyd-B Nanofluid Subject to Stratifications. Applied Nanoscience, 8, 1743-1754. https://doi.org/10.1007/s13204-018-0846-1

5. 5. Hayat, T., Kiyani, M.Z., Ahmad, I. and Alsaedi, A. (2019) Double Stratified Radiative Flow of an Oldroyd-B Nanofluid with Nonlinear Convection. Applied Mathematics and Mechanics, 40, 1861-1878. https://doi.org/10.1007/s10483-019-2251-6

6. 6. Hafeez, A., Khan, M. and Ahmed, J. (2020) Flow of Oldroyd-B Fluid over a Rotating Disk with Cattaneo-Christov Theory for Heat and Mass Fluxes. Computer Methods and Programs in Biomedicine, 191, Article ID: 105374. https://doi.org/10.1016/j.cmpb.2020.105374

7. 7. Mustafa, M., Mushtaq, A., Hayat, T. and Alsaedi, A. (2015) Model to Study the Non-Linear Radiation Heat Transfer in the Stagnation-Point Flow of Power-Law Fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 25, 1107-1119. https://doi.org/10.1108/HFF-05-2014-0147

8. 8. Sharma, R., Ishak, A. and Pop, I. (2016) Stagnation Point Flow of a Micropolar Fluid over a Stretching/Shrinking Sheet with Second-Order Velocity Slip. Journal of Aerospace Engi-neering, 29, Article ID: 04016025. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000616

9. 9. Bai, Y., Liu, X.L., Zhang, Y. and Zhang, M. (2016) Stagnation-Point Heat and Mass Transfer of MHD Maxwell Nanofluids over a Stretching Surface in the Presence of Thermophoresis. Journal of Molecular Liquids, 224, 1172-1180. https://doi.org/10.1016/j.molliq.2016.10.082

10. 10. Bai, Y., Xie, B., Zhang, Y., Cao, Y.J. and Shen, Y.P. (2019) Stagnation-Point Flow and Heat Transfer of Upper-Convected Oldroyd-B MHD Nanofluid with Cattaneo-Christov Double-Diffusion Model. International Journal of Numerical Methods for Heat and Fluid Flow, 29, 1039-1057. https://doi.org/10.1108/HFF-06-2018-0295

11. 11. Hayat, T., Qasim, M., Shehzad, S.A. and Alsaedi, A. (2014) Un-steady Stagnation Point Flow of Second Grade Fluid with Variable Free Stream. Alexandria Engineering Journal, 53, 455-461. https://doi.org/10.1016/j.aej.2014.02.004

12. 12. Zaib, A. and Shafie, S. (2015) Slip Effect on an Unsteady MHD Stagnation-Point Flow of a Micropolar Fluid towards a Shrinking Sheet with Thermophoresis Effect. International Journal for Computational Methods in Engineering Science and Mechanics, 16, 285-291. https://doi.org/10.1080/15502287.2015.1080317

13. 13. Awais, A., Masood, K., Jawad, A., Abdul, H. and Zahoor, I. (2020) Unsteady Stagnation Point Flow of Maxwell Nanofluid over Stretching Disk with Joule Heating. Arabian Journal for Science and Engineering, 45, 5529-5540. https://doi.org/10.1007/s13369-020-04468-9

14. 14. Mahdy, A. (2018) Modeling Unsteady Mixed Convection in Stagnation Point Flow of Oldroyd-B Nanofluid along a Convective Heated Stretched Sheet. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 136. https://doi.org/10.1007/s40430-018-1052-5

15. 15. Hayat, T., Qayyum, S., Waqas, M. and Alsaedi, A. (2018) Un-steady Stagnation Point Flow of Oldroyd-B Nanofluid with Heatgeneration/Absorption and Nonlinear Thermal Radiation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 84. https://doi.org/10.1007/s40430-018-1007-x

16. 16. Asghar, S. and Ahmad, A. (2012) Unsteady Couette Flow of Viscous Fluid under a Non-Uniform Magnetic Field. Applied Mathematics Letters, 25, 1953-1958. https://doi.org/10.1016/j.aml.2012.03.008

17. 17. Hayat, T., Shafiq, A., Alsaedi, A. and Asghar, S. (2015) Effect of Inclined Magnetic Field in Flow of Third Grade Fluid with Variable Thermal Conductivity. AIP Advances, 5, Article ID: 087108. https://doi.org/10.1063/1.4928321

18. 18. Mabood, F., Abdel-Rahman, R.G. and Lorenzini, G. (2016) Numerical Study of Unsteady Jeffery Fluid Flow with Magnetic Field Effect and Variable Fluid Properties. Journal of Thermal Science and Engineering Applications, 8, Article ID: 041003. https://doi.org/10.1115/1.4033013

19. 19. Jakati, S.V., Raju, B.T., Nargund, A.L. and Sathyanarayana, S.B. (2019) Study of Maxwell Nanofluid Flow over a Stretching Sheet with Non-Uniform Heat Source/Sink with External Magnetic Field. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 55, 218-232.

20. 20. Hashmi, M.S., Khan, N., Mahmood, T. and Shehzad, S.A. (2017) Effect of Magnetic Field on Mixed Convection Flow of Oldroyd-B Nanofluid Induced by Two Infinite Isothermal Stretching Disks. International Journal of Thermal Sciences, 111, 463-474. https://doi.org/10.1016/j.ijthermalsci.2016.09.026

21. 21. Sharidan, S., Mahmood, T. and Pop, I. (2006) Similarity Solutions for the Unsteady Boundary Layer Flow and Heat Transfer Due to a Stretching Sheet. International Journal of Applied Mechanics and Engineering, 11, 647-654.

22. 22. Chamkha, A.J., Aly, A.M. and Mansour, M.A. (2010) Similarity Solution for Unsteady Heat and Mass Transfer from a Stretching Surface Embedded in a Porous Me-dium with Suction/Injection and Chemical Reaction Effects. Chemical Engineering Communications, 197, 846-858. https://doi.org/10.1080/00986440903359087

23. 23. Mukhopadhyay, S., Ranjan De, P. and Layek, G.C. (2013) Heat Transfer Characteristics for the Maxwell Fluid Flow Past an Unsteady Stretching Permeable Surface Embedded in a Porous Medium with Thermal Radiation. Journal of Applied Mechanics and Technical Physics, 54, 385-396. https://doi.org/10.1134/S0021894413030061