﻿ 基于OpenFOAM对两气泡间相互作用的研究 Study of the Interaction between Two Bubbles Based on OpenFOAM

Applied Physics
Vol.05 No.07(2015), Article ID:15712,9 pages
10.12677/APP.2015.57009

Study of the Interaction between Two Bubbles Based on OpenFOAM

Xia Zheng, Zhuangzhi Shen*, Xia Wang, Jia Yang, Li Li

College of Physics and Information Technology, Shaanxi Normal University, Xi’an Shaanxi

Email: *szz6@163.com

Received: Jun. 30th, 2015; accepted: Jul. 13th, 2015; published: Jul. 21st, 2015

ABSTRACT

Applying the OpenFOAM software by adopting the SIMPLEC algorithm and VOF model of the PLIC, the motion characteristics of two bubbles (horizontal and vertical distribution) in still water were numerically simulated. The process of bubble shape deformation, the flow field changes around the bubbles, the interaction between the bubbles and flow field, and the influence of the separation distance and the width of container on bubbles motion were analyzed in detail. The results showed that the bubbles are symmetrically distributed in different shapes at different moments. Due to the existence of the vortex field, the two horizontal bubbles attract or repulse each other periodically in the process of rising, and meanwhile the bubbles will swing up. But, the two vertical distribution bubbles will coalesce or separate repeatedly. With the increasing distance of the two bubbles, the interaction strength becomes smaller. With the increasing width of the container, the influence of container on bubbles motion becomes smaller.

Keywords:SIMPLEC Algorithm, VOF Model, Bubble, Flow Field

Email: *szz6@163.com

1. 引言

2. 数学模型

2.1. 模型简介

OpenFOAM (英文Open Source Field Operation and Manipulation的缩写)，意为开源的场运算和处理软件)是对连续介质力学问题进行数值计算的C++自由软件工具包，其代码遵守GNU通用公共许可证。它可进行数据预处理、后处理和自定义求解器，常用于计算流体力学(CFD)领域。它对于处理一个算例由三个部分构成：前处理部分，求解部分，后处理部分。本文在数值模拟过程中使用的是OpenFOAM软件包中的多相流下的层流瞬态求解器interFoam，它是在有限体积法原理的基础上使用有界压缩的VOF法追踪气液两相界面的。

2.2. 控制方程

1) 不可压缩牛顿流体的连续性方程

(1)

2) 考虑表面张力的动量方程

(2)

3) 采用VOF法追踪气泡界面的体积分数输运方程

(3)

2.3. 参数设置

3. 模拟结果与分析

3.1. 水平分布的两气泡在静水中运动的形变和流场变化

(a) (t = 0 s) (b) (t = 0.05 s)

(c) (t = 0.1 s) (d) (t = 0.15 s)

(e) (t = 0.25 s) (f) (t = 0.30 s) (g) (t = 0.40 s) (h) (t = 0.50 s)

Figure 1. The deformation and the flow field changes of two bubbles of horizontal distribution in still water

3.2. 竖直分布的两气泡在静水中运动的形变和流场变化

(a) (t = 0 s) (b) (t = 0.03 s)

(c) (t = 0.04 s) (d) (t = 0.05 s)

(e) (t = 0.15 s) (f) (t = 0.20 s)(g) (t = 0.30 s) (h) (t = 0.45 s)

Figure 2. The deformation and the flow field changes of two bubbles of vertical distribution in still water

3.3. 气泡间距对气泡形变和流场的影响

3.4. 容器宽度对气泡形变和流场的影响

(a) (s = 3R) (b) (s = 4R)(c) (s = 3R) (d) (s = 4R)

Figure 3. The influence of distance on bubble deformation and flow field

(a) (L = 6R) (b) (L = 14R)

Figure 4. The influence of container width on flow field

Figure 5. The horizontal velocity of flow field

4. 结论

Study of the Interaction between Two Bubbles Based on OpenFOAM. 应用物理,07,61-70. doi: 10.12677/APP.2015.57009

1. 1. 康灿, 周亮, 王育力 (2013) 磨料水射流冲击材料壁面的模拟与实验. 江苏大学学报, 3, 276-280.

2. 2. Dahikar, S.K., Gulawani, S.S. and Joshi, J.B. (2007) Effect of nozzle diameter and its orientation on the flow pattern and plume dimensions in gas-liquid jet reactors. Chemical Engineering Science, 62, 7471-7483. http://dx.doi.org/10.1016/j.ces.2007.08.035

3. 3. Zhou Q.L., Li, N. and Chen, X. (2009) Analysis of water drop erosion on turbine blades based on a nonlinear liquid solid impact model. International of Impact Engineering, 36, 1156-1171. http://dx.doi.org/10.1016/j.ijimpeng.2009.02.007

4. 4. Lorstad, D. and Francois, M. (2004) Assessment of volume of fluid and immersed boundary methods for droplet calculations. International Journal for Number Methods in Fluids, 46, 106-125. http://dx.doi.org/10.1002/fld.746

5. 5. Tryggvason, G., Bunner, B. and Esmaeeli, A. (2001) A front tracking method for the computations of multiphase flow. Journal of Computational Physics, 169, 708-759. http://dx.doi.org/10.1006/jcph.2001.6726

6. 6. 宗智, 何亮, 张恩国 (2007) 水中结构物附近三维爆炸气泡的数值模拟. 水动力学研究与进展, 5, 592-602.

7. 7. 张阿漫, 姚熊亮 (2008) 近自由面水下爆炸气泡的运动规律研究. 物理学报, 1, 339-352.

8. 8. 张阿漫, 姚熊亮 (2008) 单个三维气泡的动力学特性研究. 应用力学学报, 1, 107-111.

9. 9. Osher, S. and Fedkiw, R.P. (2001) Level set methods, an overview and some recent results. Journal of Computional Physics, 169, 463-502. http://dx.doi.org/10.1006/jcph.2000.6636

10. 10. Sussman, M., Smereka, P. and Osher, S. (1994) A level set approach for computing solutions to incompressible two-phase flow. Journal of Com-putional Physics, 114, 146-159. http://dx.doi.org/10.1006/jcph.1994.1155

11. 11. Watanable, T. and Ebihara, K. (2003) Numerical simulation of coalescence and breakup of rising droplets. Computational Fluids, 32, 832-834.

12. 12. Puckett, E.G., Almgren, A.S. and Bell, J.B. (1997) A high-order projection method for tracking fluid interfaces in variable density incompressible flows. Journal of Computional Physics, 130, 269-282. http://dx.doi.org/10.1006/jcph.1996.5590

13. 13. 端木玉, 朱仁庆 (2007) 流体体积方程的求解方法. 江苏科技大学学报: 自然科学版, 2, 10-15.

14. 14. Robinson, P.B., Boulton-Stone, J.M. and Blake, J.R. (1995) Application of boundary integral method to the interaction of rising two-dimensional, deformable gas bubbles. Journal of Engineering Mathematics, 29, 393-412. http://dx.doi.org/10.1007/BF00043975

15. 15. 焦焱 (2009) 气泡运动的格子Boltzmann方法模拟. 硕士论文, 哈尔滨工业大学, 哈尔滨.

16. 16. 张淑君, 吴锤结 (2008) 气泡之间相互作用的数值模拟. 水动力学研究与进展, 6, 683-684.