﻿ 砷化镓六边形散射元构建的光子晶体慢光效应分析 Analysis of Slow Light Effect of Photonic Crystal by GaAs Hexagonal Scatterers

Applied Physics
Vol. 09  No. 10 ( 2019 ), Article ID: 32700 , 6 pages
10.12677/APP.2019.910048

Analysis of Slow Light Effect of Photonic Crystal by GaAs Hexagonal Scatterers

Haonan Liu1, Jinyu Pei2, Hang Sun1, Hao Wang1, Yong Wan1*

1College of Physics Science, Qingdao University, Qingdao Shandong

2Qingdao No. 2 High School, Qingdao Shandong

Received: Oct. 1st, 2019; accepted: Oct. 21st, 2019; published: Oct. 28th, 2019

ABSTRACT

The dispersion curves of two defect-free structures are calculated by photonic crystal by gallium arsenide (GaAs) hexagonal scatterers in this paper, and the group refractive index, group velocity, bandwidth and normalized band width product are obtained, respectively. The results show that for the perfect structure, when the upper and lower bottom surface is the same and r = 0.05 μm, the normalized band width product is 0.262, and when the upper and lower bottom surface is different and r = 0.05 μm, the normalized band width product is 0.250, so both structures have good slow light effect.

Keywords:GaAs, Scatterers, Photonic Crystal, Slow Light

1青岛大学物理科学学院，山东 青岛

2青岛市第二中学，山东 青岛

1. 引言

2. 结构设计和及慢光机理

Figure 1. Perfect structure by hexagonal scatterers

${n}_{g}=\frac{c}{{v}_{g}}$ (1)

${n}_{g}=c\frac{\text{d}k}{\text{d}\omega }$ (2)

$f=\frac{\omega a}{2\text{π}c}$ (3)

${n}_{g}\Delta \omega /\omega ={n}_{g}\Delta f/f$ (4)

3. 不同结构的慢光特性分析

3.1. 上下层相同结构的慢光分析

Figure 2. Group refractive index curve of the structure with same in the upper and lower layers of GaAs

Table 1. ng, vg, n g Δ ω ω for the GaAs structure with same in the upper and lower layers

3.2. 上下层结构不同的慢光分析

Figure 3. Group refractive index curves with different upper and lower layers

Table 2. ng, vg, n g Δ ω ω for the GaAs structure with different the upper and lower layers

4. 结论

Analysis of Slow Light Effect of Photonic Crystal by GaAs Hexagonal Scatterers[J]. 应用物理, 2019, 09(10): 397-402. https://doi.org/10.12677/APP.2019.910048

1. 1. Green, M.A., Emery, K., Hishikawa, Y., et al. (2011) Solar Cell Efficiency Tables. Progress in Photovoltaics Research and Applications, 19, 565-572. https://doi.org/10.1002/pip.1150

2. 2. Bella, F., Mobarak, N.N., Jumaah, F.N., et al. (2015) From Seaweeds to Biopolymeric Electrolytes for Third Generation Solar Cells: An Intriguing Approach. Electrochimica Acta, 151, 306-311. https://doi.org/10.1016/j.electacta.2014.11.058

3. 3. Xing, S., Broderick, L.Z. and Kimerling, L.C. (2014) Photonic Crystal Structures for Light Trapping in Thin-Film Si Solar Cells: Modeling, Process and Optimizations. Optics Communications, 314, 41-47. https://doi.org/10.1016/j.optcom.2013.07.085

4. 4. 陈培专, 侯国付, 索松, 等. 硅基薄膜太阳电池一维光子晶体背反射器的模拟设计与制备[J]. 物理学报, 2014, 63(12): 1-5.

5. 5. Mutitu, J.G., Shi, S.Y., Chen, C.H., et al. (2008) Thin Film Silicon Solar Cell Design Based on Photonic Crystal and Diffractive Grating Structures. Optics Express, 16, 15238-15248. https://doi.org/10.1364/OE.16.015238

6. 6. Wan, Y., Jiang, C.-Y., Wang, X.-M., Liu, H.-N., Wang, H., Cai, Z.Y. and Guo, X.X. (2019) Ultrathin and Easy-Processing Photonic Crystal Absorbing Layers to Enhance Light Absorption Efﬁciency of Solar Cells. APL Materials, 7, 1-7. https://doi.org/10.1063/1.5091574

7. 7. Zheng, G.G., Xu, L.H., Pei, S.X., et al. (2013) Theoretical Analysis of Performance Improvement of Thin Film Solar Cells with Two-Dimensional Photonic Crystals and Distributed Bragg Reflector Texture Structures. Optics Communications, 309, 318-322. https://doi.org/10.1016/j.optcom.2013.08.005

8. 8. 沈宏君, 李婷, 卢辉东, 黄仙健, 李新兰. 利用陷光结构增加硅薄膜太阳能电池的吸收效率[J]. 发光学报, 2016, 37(7): 816-822.

9. 9. Wan, Y., Fu, K., Li, C.H. and Yun, M.J. 2013) Improving Slow Light Effect in Photonic Crystal Line Defect Waveguide by Using Eye-Shaped Scatterers. Optics Communications, 286, 192-196. https://doi.org/10.1016/j.optcom.2012.09.025

10. 10. 万勇, 韩文娟, 贾明辉, 云茂金, 郭月, 孙蕾. 圆弓形散射元构建的耦合波导的慢光特性研究[J]. 光学学报, 2015, 35(3): 136-144.

11. 11. Wan, Y., Xu, S., Li, M.-X., Liu, M.-N., Jiang, C.-Y. and Yuan, F. (2018) Slow Light Effect with High Group Index and Wideband by Saddle-Like Mode in PC-CROW. Frontier of Physics, 13, 1-7. https://doi.org/10.1007/s11467-017-0719-1

12. NOTES

*通讯作者。