Hans Journal of Biomedicine
Vol.06 No.04(2016), Article ID:18703,6 pages
10.12677/HJBM.2016.64004

Molecular Cloning, Heterologous Expression, and Purification of the Sialic Acid Transporter NanT

Shangyu Huang1,2, Qingru Shi1*

1Youth Science and Technology Guide Station of Baoshan District, Shanghai

2Shanghai Xingzhi High School, Shanghai

Received: Sep. 21st, 2016; accepted: Oct. 7th, 2016; published: Oct. 10th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Sialic acids are nine-carbon sugar acids, and are found widely distributed in animal tissues. In human, the brain contains high concentration of sialic acids, which are vital for neural transmission. The transport of sialic acids in vivo is carried out by the multi-pass membrane protein, NanT, a membrane of the SLC17 transporter family. The loss of function of NanT will cause salla disease and infantile sialic acid storage disorder. However, the structure and mechanism of the sialic acids transporter remain unknown. In this study, we clone and express the NanT protein. Combining the affinity and size-exclusion chromatography, we obtain the high purity of the target protein. Our results provide a basis for further exploring the structure and mechanism of the sialic acids transporter, NanT.

Keywords:Sialic Acid, Transporter, Neural Transmission, Salla Disease

唾液酸转运体蛋白NanT的分子克隆, 异源表达及纯化

黄尚谕1,2,史青茹1*

1上海市宝山区青少年科学技术指导站,上海

2上海市行知中学,上海

收稿日期:2016年9月21日;录用日期:2016年10月7日;发布日期:2016年10月10日

摘 要

唾液酸是一种含有九个碳的单糖的衍生物。广泛的存在于动物体的组织内。尤其是人类的大脑,含有高浓度的唾液酸。这些唾液酸被认为是神经节苷脂的传递递质,对神经传导具有重要意义。唾液酸在体内生物膜上的转运是由一种具有多个跨膜螺旋的膜蛋白NanT介导的。NanT蛋白是SLC17家族转运体蛋白的一员,它的功能丧失会导致扎拉疾病以及婴儿唾液酸积累紊乱。然而唾液酸转运体蛋白的结构以及其底物转运机制目前都是未知的。在这篇文章中,我们克隆并表达了NanT蛋白。结合亲和层析以及凝胶阻滞层析等手段,我们获得了高纯度的NanT目的蛋白。我们的结果为进一步研究NanT的结构以及其底物转运机制提供了很好的基础。

关键词 :唾液酸,转运体,神经传递,扎拉病

1. 引言

脊椎动物的细胞表面修饰着大量的复杂的糖链,这些糖链主要锚定在膜蛋白以及磷脂表面。唾液酸是一种含有九碳单糖骨架的化合物,通常分布在糖链的最外端 [1] - [3] 。由于唾液酸的定位特殊性及广泛存在性,它通常介导或调控一些重要的生理和病理过程。例如,大量的唾液酸分布在人类血红细胞的表面,可以使血红细胞带有负电性,从而获得电荷排斥效果,在血液环境中这种能力能够阻碍一些非特异的细胞间的相互作用 [4] - [6] 。另外,大量的唾液酸存在于肾小球基底膜以及足细胞的足突上对维持机体的渗透功能具有重要作用 [7] [8] 。伸展的寡聚唾液酸链还会影响神经细胞的可塑性 [9] - [12] 。在病理条件下,唾液酸还是影响循环通路中一些糖蛋白半衰期的重要因子,如果唾液酸缺失,潜在的单糖例如半乳糖会被肝脏或其它器官中的受体识别,这样糖蛋白就会被快速的降解清除 [13] [14] 。因此,研究唾液酸转运体蛋白具备重要的生物学意义。

2. 材料与方法

2.1. 唾液酸转运体蛋白NanT的基因克隆及表达质粒的构建

2.1.1. 基因扩增

通过聚合酶链式反应(PCR),我们从大肠杆菌菌液中获得了唾液酸转运体蛋白NanT的基因。通过软件Primer Premier 5.0,遵循引物设计的基本原则,我们设计了如下引物(黑体部分表示酶切位点,引物由英骏公司合成):

F: 5'-GGCGCGCATATGAGTACTACAACCCAGAATATCC-3'

R: 5'-GACGACTCGAGTTAACTTTTGGTTTTGACTAAATCG-3'

2.1.2. PCR产物的回收,酶切与连接

通过琼脂糖凝胶电泳我们分离并检测PCR目标产物条带,然后进行目的条带切胶回收(TIANGEN胶回收试剂盒)。PCR回收的目标产物与载体P22b分别用NdeI和XhoI (Takara公司)进行双酶切。酶切反应在37℃恒温水浴锅中进行,反应时间为4小时。酶切后的产物通过回收后,将PCR酶切产物与酶切好的载体进行连接反应(Takara公司Solution I试剂盒)。连接条件为恒温水浴锅10小时。

2.1.3. 连接产物转化

取出DH5α感受细胞(−80℃冻存)置于冰上10 min使其解冻。然后将连接产物全部加入感受态细胞中,冰上放置30 min,42℃恒温水浴锅中热激90 s,冰上再放置5 min。在超净工作台中加入200 µl LB培养基。37℃摇床培养(200 rpm) 40 min后把菌液均匀涂布在含氨苄抗生素的固体LB培养平板上, 37 ℃ 培养箱中过夜培养。

2.1.4. 抽提质粒并进行阳性筛选

取出培养箱中的平板,挑取5个单菌落于5 ml含有氨苄抗性的LB培养基小管中,然后置于摇床中, 37 ℃ ,220 rpm培养12小时左右。提取质粒步骤按照质粒小抽试剂盒中的步骤(天根)。抽提后的质粒按照基因扩增的PCR程序进行阳性筛选,筛选后的阳性克隆进行保菌并测序。

2.2. 唾液酸转运体蛋白NanT的表达与纯化

2.2.1. 转化BL21菌株并进行大量培养

将测序正确的质粒转化大肠杆菌BL21表达菌株,37℃培养箱培养过夜后,挑取单菌落于6 ml含有氨苄抗性的LB培养基小管中,然后置于摇床中, 37 ℃ ,220 rpm培养12小时左右。继续培养扩大到6瓶(1.5 L/瓶)LB培养基中, 37 ℃ ,220 rpm培养至OD600 = 0.8左右。摇床降温到16℃,加入1 mM的IPTG进行诱导表达,220 rpm继续培养20个小时。离心机6000 rpm离心8 min收集大肠杆菌,然后将收集后的菌体用binding buffer ( 20 mM HEPES pH 7.5, 150 mM NaCl)重悬,把重悬液倒至铁制烧杯中,利用超声破碎方法对其进行破碎。超声破碎仪参数设置为工作时间5 min,工作2 s,间歇4 s,功率42%。破碎后的样品按照1.5%加入去垢剂DDM。置于旋转仪室温进行融膜。3 h后,18,000 rpm离心40 min取上清。

2.2.2. NanT蛋白的亲和层析

我们首先采用Ni2+亲和层析柱(NTA)进行蛋白纯化,先用binding buffer ( 20 mM HEPES pH 7.5, 150 mM NaCl,1 mM DDM)平衡柱子,然后把离心上清液缓慢流经柱子。上样完成后,用binding buffer冲洗柱子20个柱体积,然后用washing buffer ( 20 mM HEPES pH 7.5, 150 mM NaCl, 1 mM DDM, 20 mM iminazole)洗脱10个柱体积去除杂蛋白。最后用elution buffer ( 20 mM HEPES pH 7.5, 150 mM NaCl, 1 mM DDM, 300 mM iminazole)洗脱目的蛋白。

2.2.3. NanT蛋白的凝胶阻滞层析

收集的目的蛋白液用浓缩管(milipore)浓缩至1 ml,加入30 μl TEV酶进行柱上过夜酶切来除去组氨酸标签,酶切产物用Superdex™200 (GE Healthcare)分子筛柱子进行进一步纯化,缓冲液为 20 mM HEPES pH 7.5,150 mM NaCl,1 mM DDM,流速为0.5 ml/min,最后用SDS-PAGE鉴定蛋白纯度。

3. 结果与讨论

3.1. nanT基因扩增

我们以大肠杆菌BL21菌株为模板,通过PCR反应,获得了全长NanT蛋白(496个氨基酸残基,共1488个碱基对)的编码基因,并通过琼脂糖凝胶电泳进行分离检测(图1),DNA扩增片段在DNA marker 1000 bp~2000 bp之间,约1500 bp符合预期。

3.2. NanT蛋白的表达纯化

通过Ni2+亲和层析柱我们对NanT蛋白进行了初步的纯化,然后用Superdex™200 (GE Healthcare)分子筛柱子进行进一步纯化,最后通过SDS-PAGE电泳检测蛋白纯度(图2),同时我们进行多次水平实验,确定纯化提取到的蛋白为目标蛋白。

3.3. 研究NanT蛋白转运唾液酸机制的生物学意义

在体内,唾液酸含量的改变可以体现很多的病理学特征。在临床病理上,体液唾液酸水平的检测可以用于疾病的预测。现在很多的学术论文都建议通过检查血液中的唾液酸含量来检测疾病 [15] - [18] 。内皮细胞腔表面含有高浓度的唾液酸含量,它的一个重要功能是供淋巴细胞的L-选择素识别 [19] 。相反,活化的内皮细胞表达E-选择素和P-选择素,它们能够识别淋巴细胞表面的唾液酸。这些选择素介导的相互作用介导了很多重要的生命过程,包括炎症,淋巴细胞循环,血液凝固,再灌注损伤 [19] [20] 。低浓度脂蛋白上的唾液酸对于内皮细胞磷脂的摄取起到重要作用,因此与动脉粥样硬化疾病密切相关 [21] - [23] 。人类的大脑里面含有最高水平的唾液酸,这些唾液酸对于神经传递具有重要作用 [24] 。由于唾液酸的广泛分布性及特殊定位,唾液酸常常被一些病原菌做为攻击靶点。例如,流感病毒通过结合唾液酸到达气管上皮细胞,从而达到侵染人类的目的 [25] [26] 。

Figure 1. Amplification of PCR gene nanT in Escherichia coli

图1. 大肠杆菌nanT基因PCR扩增结果

Figure 2. NanT protein Superdex™200 (GE Healthcare) molecular sieve and SDS electrophoresis map

图2. NanT蛋白Superdex™200 (GE Healthcare)分子筛峰图及SDS电泳图

唾液酸转运体蛋白是一类拥有多个跨膜螺旋的膜插入蛋白,对唾液酸在体内的运输起到决定性的作用,因此它能否正常的发挥功能与人类的多种疾病密切相关。而本文中,我们通过大肠杆菌表达系统,摸索出了唾液酸转运体蛋白NanT的表达及纯化条件,为进一步研究其三维结构和转运机制提供了良好的基础。

文章引用

黄尚谕,史青茹. 唾液酸转运体蛋白NanT的分子克隆,异源表达及纯化
Molecular Cloning, Heterologous Expression, and Purification of the Sialic Acid Transporter NanT[J]. 生物医学, 2016, 06(04): 25-30. http://dx.doi.org/10.12677/HJBM.2016.64004

参考文献 (References)

  1. 1. Schauer, R. (2000) Achievements and Challenges of Sialic Acid Research. Glycoconjugate Journal, 17, 485-499. http://dx.doi.org/10.1023/A:1011062223612

  2. 2. Varki, A. (2007) Glycan-Based Interactions Involving Vertebrate Sialic-Acid-Recognizing Proteins. Nature, 446, 1023-1029. http://dx.doi.org/10.1038/nature05816

  3. 3. Angata, T. and Varki, A. (2002) Chemical Diversity in the Sialic Acids and Related Alpha-Keto Acids: An Evolutionary Perspective. Chemical Reviews, 102, 439-469. http://dx.doi.org/10.1021/cr000407m

  4. 4. Varki, A. and Gagneux, P. (2012) Multifarious Roles of Sialic Acids in Immunity. Annals of the New York Academy of Sciences, 1253, 16-36. http://dx.doi.org/10.1111/j.1749-6632.2012.06517.x

  5. 5. Varki, A. (2008) Sialic Acids in Human Health and Disease. Trends in Molecular Medicine, 14, 351-360. http://dx.doi.org/10.1016/j.molmed.2008.06.002

  6. 6. Born, G.V. and Palinski, W. (1985) Unusually High Concentrations of Sialic Acids on the Surface of Vascular Endothelia. British Journal of Experimental Pathology, 66, 543-549.

  7. 7. Dekan, G., Gabel, C. and Farquhar, M.G. (1991) Sulfate Contributes to the Negative Charge of Podocalyxin, the Major Sialoglycoprotein of the Glomerular Filtration Slits. Proceedings of the National Academy of Sciences of the United States of America, 88, 5398-5402. http://dx.doi.org/10.1073/pnas.88.12.5398

  8. 8. Gelberg, H., Healy, L., Whiteley, H., Miller, L.A. and Vimr, E. (1996) In Vivo Enzymatic Removal of Alpha 2-->6- Linked Sialic Acid from the Glomerular Filtration Barrier Results in Podocyte Charge Alteration and Glomerular Injury. Laboratory Investigation: A Journal of Technical Methods and Pathology, 74, 907-920.

  9. 9. Weinhold, B., et al. (2005) Genetic Ablation of Polysialic Acid Causes Severe Neurodevelopmental Defects Rescued by Deletion of the Neural Cell Adhesion Molecule. The Journal of Biological Chemistry, 280, 42971-42977. http://dx.doi.org/10.1074/jbc.M511097200

  10. 10. Johnson, C.P., Fujimoto, I., Rutishauser, U. and Leckband, D.E. (2005) Direct Evidence That Neural Cell Adhesion Molecule (NCAM) Polysialylation Increases Intermembrane Repulsion and Abrogates Adhesion. The Journal of Biological Chemistry, 280, 137-145. http://dx.doi.org/10.1074/jbc.M410216200

  11. 11. El Maarouf, A., Petridis, A.K. and Rutishauser, U. (2006) Use of Polysialic Acid in Repair of the Central Nervous System. Proceedings of the National Academy of Sciences of the United States of America, 103, 16989-16994. http://dx.doi.org/10.1073/pnas.0608036103

  12. 12. Rutishauser, U. (2008) Polysialic Acid in the Plasticity of the Developing and Adult Vertebrate Nervous System. Nature Reviews. Neuroscience, 9, 26-35. http://dx.doi.org/10.1038/nrn2285

  13. 13. Weigel, P.H. and Yik, J.H. (2002) Glycans as Endocytosis Signals: The Cases of the Asialoglycoprotein and Hyaluronan/Chondroitin Sulfate Receptors. Biochimica et Biophysica Acta, 1572, 341-363. http://dx.doi.org/10.1016/S0304-4165(02)00318-5

  14. 14. Raju, T.S., Briggs, J.B., Chamow, S.M., Winkler, M.E. and Jones, A.J. (2001) Glycoengineering of Therapeutic Glycoproteins: In Vitro Galactosylation and Sialylation of Glycoproteins with Terminal N-Acetylglucosamine and Galactose Residues. Biochemistry, 40, 8868-8876. http://dx.doi.org/10.1021/bi010475i

  15. 15. Pickup, J.C., et al. (1995) Serum Sialic Acid Concentration and Coronary Heart Disease in NIDDM. Diabetes Care, 18, 1100-1103. http://dx.doi.org/10.2337/diacare.18.8.1100

  16. 16. Crook, M.A., et al. (1994) Serum Sialic Acid, a Risk Factor for Cardiovascular Disease, Is Increased in IDDM Patients with Microalbuminuria and Clinical Proteinuria. Diabetes Care, 17, 305-310. http://dx.doi.org/10.2337/diacare.17.4.305

  17. 17. Ponnio, M., Alho, H., Nikkari, S.T., Olsson, U., Rydberg, U. and Sillanaukee, P. (1999) Serum Sialic Acid in a Random Sample of the General Population. Clinical Chemistry, 45, 1842-1849.

  18. 18. Afzali, B., et al. (2003) Raised Plasma Total Sialic Acid Levels Are Markers of Cardiovascular Disease in Renal Dialysis Patients. Journal of Nephrology, 16, 540-545.

  19. 19. Rosen, S.D. (2004) Ligands for L-Selectin: Homing, Inflammation, and beyond. Annual Review of Immunology, 22, 129-156. http://dx.doi.org/10.1146/annurev.immunol.21.090501.080131

  20. 20. Ley, K. (2003) The Role of Selectins in Inflammation and Disease. Trends in Molecular Medicine, 9, 263-268. http://dx.doi.org/10.1016/S1471-4914(03)00071-6

  21. 21. Dong, Z.M., Chapman, S.M., Brown, A.A., Frenette, P.S., Hynes, R.O. and Wagner, D.D. (1998) The Combined Role of P- and E-Selectins in Atherosclerosis. The Journal of Clinical Investigation, 102, 145-152. http://dx.doi.org/10.1172/JCI3001

  22. 22. Millar, J.S. (2001) The Sialylation of Plasma Lipoproteins. Atherosclerosis, 154, 1-13. http://dx.doi.org/10.1016/S0021-9150(00)00697-3

  23. 23. Tertov, V.V., et al. (2001) Human Plasma Trans-Sialidase Causes Atherogenic Modification of Low Density Lipopro- tein. Atherosclerosis, 159, 103-115. http://dx.doi.org/10.1016/S0021-9150(01)00498-1

  24. 24. Schnaar, R.L. (2004) Glycolipid-Mediated Cell-Cell Recognition in Inflammation and Nerve Regeneration. Archives of Biochemistry and Biophysics, 426, 163-172. http://dx.doi.org/10.1016/j.abb.2004.02.019

  25. 25. Suzuki, Y. (2005) Sialobiology of Influenza: Molecular Mechanism of Host Range Variation of Influenza Viruses. Biological & Pharmaceutical Bulletin, 28, 399-408. http://dx.doi.org/10.1248/bpb.28.399

  26. 26. Russell, C.J. and Webster, R.G. (2005) The Genesis of a Pandemic Influenza Virus. Cell, 123, 368-371. http://dx.doi.org/10.1016/j.cell.2005.10.019

*通讯作者。

期刊菜单