Hans Journal of Biomedicine
Vol. 12  No. 03 ( 2022 ), Article ID: 51271 , 7 pages
10.12677/HJBM.2022.123018

高迁移率族蛋白1在白癜风中的研究进展

冯丁夏,肖异珠

重庆医科大学附属儿童医院,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆

收稿日期:2022年4月22日;录用日期:2022年5月9日;发布日期:2022年5月16日

摘要

白癜风发病机制复杂,涉及多种学说。氧化应激和自身免疫作为白癜风形成与发展的重要机制,两者相互影响,贯穿疾病整个进程的始终。现有研究表明,部分黑素细胞特异性自身免疫的活化由氧化应激诱发。高迁移率族蛋白1作为氧化应激与自身免疫联系的重要分子,近来被发现参与白癜风发病过程。本文将结合近年来的研究进展,对高迁移率族蛋白1在白癜风发病中的作用进行综述,为靶向治疗提供新的突破点。

关键词

高迁移率族蛋白1,白癜风,发病机制

Research Advances of HMGB1 in Vitiligo

Dingxia Feng, Yizhu Xiao

Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing

Received: Apr. 22nd, 2022; accepted: May 9th, 2022; published: May 16th, 2022

ABSTRACT

The pathogenesis of vitiligo is complex and involves many theories. As the important mechanisms of vitiligo occurrence and progression, oxidative stress and autoimmunity influence each other throughout the whole process of the disease. Existing studies suggest that some melanocyte-specific autoimmunity activation is induced by oxidative stress. HMGB1, as important molecule that links oxidative stress and autoimmunity, has recently been found to be involved in the pathogenesis of vitiligo. This article will briefly review the research progress on the role of HMGB1 in vitiligo to provide a breakthrough for targeted therapy.

Keywords:HMGB1, Vitiligo, Pathogenesis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

白癜风为获得性色素脱失性疾病,以皮肤、黏膜边界清楚的白斑为特征,虽未给患者带来躯体上的痛苦,但其引发的容貌焦虑,给患者甚至其家庭带来的心理负担不容忽视。白癜风全球患病率约0.50%~2.00%,我国流行病调查结果显示,中国白癜风患者占比约0.56% [1]。白癜风治疗周期长,缓解后易复发,迄今为止尚无统一的治疗方法。对白癜风发病机制的正确认识可更好地指导治疗,目前研究最为深入、成熟且认可度最高的是自身免疫学说,临床应用免疫抑制剂带来的疗效也为该理论提供了循证依据。自身免疫的启动与维持也成为一直以来的研究热点,已有研究 [2] 表明,氧化应激与自身免疫的活化密切相关。在白癜风自身免疫与氧化应激关系研究中,高迁移率族蛋白1 (high mobility group box 1, HMGB1)作为新发现的分子,通过多种不同机制参与白癜风发生发展过程,除可介导氧化应激诱导的免疫性损伤外,还可激活黑素细胞凋亡。本文结合近年来的研究进展,对HMGB1在白癜风中的作用进行综述,为今后靶向治疗提供新的思路。

2. HMGB1结构及功能特点

HMGB1主要分布于人体有核细胞的细胞核中,因在聚丙烯酰胺凝胶电泳中的高迁移能力而得名,为结构高度保守的染色体结合蛋白。人类HMGB1基因位于13q12,编码的蛋白含有215个氨基酸,主要由3个结构域组成,其中A盒(1-79氨基酸残基发挥抗炎活性)和B盒(89-163氨基酸残基发挥促炎功能)为DNA结合域,带负电的C尾(186-215氨基酸残基)调节与DNA结合的亲和力 [3]。HMGB1能实现胞核定位,与自身结构中的核定位信号(nuclear localization signals, NSL)密切相关,其存在两段NSL,分别位于28~44、179~185氨基酸残基。HMGB1在胞质中合成后通过NSL与核输入蛋白结合,随之被转运至胞核,然后非特异性结合至双螺旋DNA链沟槽中。HMGB1在第23、45和106位碳各存在1个巯基,根据其氧化还原状态,可将HMGB1分为氧化型、二硫化物型、还原型3种形式,还原型及二硫化物型之间可相互转化,而氧化型则不能转化为二硫化物型。巯基为HMGB1结合、激活受体的关键位点 [4],是其发挥活性所必须,因此氧化型HMGB1刺激炎症因子产生的活性最低。见图1

HMGB1作为一种多功能蛋白,其发挥的作用与细胞中的空间定位有关。生理情况下,HMGB1分布于胞核,但在感染、损伤等因素作用下,会移位至胞质甚至释放至胞外。在胞核中,HMGB1作为DNA的分子伴侣,通过调节核小体稳定性、DNA构象 [4]、DNA聚合酶活性,参与DNA复制、转录及损伤修复等过程。胞核HMGB1可通过调控炎症相关基因的转录影响皮肤炎症反应,Senda N等 [5] 经小鼠实验发现,角质形成细胞核内的HMGB1可选择性抑制促炎基因IL (白细胞介素)-24转录,减轻变应性接触性皮炎的炎症反应。胞核HMGB1分子经乙酰化、磷酸化、糖基化 [6]、氧化 [7] 等化学修饰后,与DNA结合变得松散,并通过核输出序列与核膜上的核输出素相结合,从而被转运至胞质中。胞质HMGB1于2010年被Tang D等 [8] 发现能与自噬蛋白beclin-1作用促进细胞自噬,维持细胞稳态。然而Huebener P等 [9] 于2014年发现胞质HMGB1并非细胞自噬所必需,即使肝细胞HMGB1缺陷,肝脏自噬仍能正常发生。Yu R等 [10] 发现HMGB1在胞质中能与病原体的核酸结合,影响其遗传物质表达。当细胞处于感染、缺氧等应激环境时,HMGB1又可通过细胞的主动分泌或死亡被动释放至胞外,作为损伤相关分子模式以单体或复合物形式与十余种受体结合 [11]。根据激活后产生的效应,将胞外HMGB1受体分为活化性及抑制性两大类,活化性受体包括晚期糖基化终产物受体(advanced glycation end products, RAGE)、Toll样受体2、4、9 (Toll-like receptors, TLR-2、TLR-4、TLR-9)、N-甲基-D-天冬氨酸受体(NMDAR) [12] 等,抑制性受体包括T淋巴细胞免疫球蛋白黏蛋白-3 (T-cell immunoglobulin mucin-3, TIM-3)、CD24。目前研究最为深入且成熟的是HMGB1-RAGE及HMGB1-TLRs轴,两者都能激活核因子κB (NF-κB) [13] [14]、p38丝裂原活化蛋白激酶(p38 MAPK) [15] 等信号通路,促进肿瘤坏死因子(TNF)-α、白介素(IL)-1β、IL-6等细胞因子分泌,进而调节免疫细胞活性、增殖、迁移等功能,参与自身免疫 [16]、感染 [17]、肿瘤 [18] 等疾病的发生发展过程。

Figure 1. Three redox forms of HMGB1 and their transformations

图1. HMGB1的3种氧化还原形式及转化

3. HMGB1与白癜风发病的关系

3.1. 胞外HMGB1促进黑素细胞损伤

表皮中的黑素细胞在黑素小体内合成黑素,并由树突传至黑素单元中的角质形成细胞,实现皮肤黑素化,当其中任一环节受影响,将导致皮肤的色素减退或脱失。黑素细胞的破坏作为白癜风形成与发展的核心因素,目前已知的死亡机制有自身免疫破坏、细胞坏死、凋亡及新型的死亡形式–坏死性凋亡 [19]。HMGB1自1973年被发现以来,已被证实广泛参与机体的多种炎症反应,在心血管疾病中被视为炎症驱动因子 [20],而在脓毒血症中充当晚期炎症因子,在银屑病中参与炎症反应的放大与维持 [21]。HMGB1在多种炎症性疾病中的促炎功能引起了白癜风研究者的注意。已有研究发现,白癜风患者外周血和皮损处HMGB1水平较正常人明显升高 [22] [23],提示HMGB1可能与白癜风发病有关。HMGB1在生理情况下主要定位于角质形成细胞和黑素细胞核内,然而当细胞发生氧化应激时,可发生核质易位并释放至细胞外间隙 [22] [24]。

近年来有研究发现,胞外HMGB1可能通过诱导黑素细胞凋亡参与白癜风发生发展过程,Kim J Y等 [22] 使用外源性重组HMGB1处理原代人表皮黑素细胞后,发现黑素细胞死亡增加,其机制与凋亡相关蛋白天冬氨酸蛋白水解酶-3 (caspase-3)表达增多有关,同时细胞内自噬会代偿性活化,进而吞噬黑素及黑素合成相关蛋白gp100,使黑素含量进一步减少,加剧白癜风病情进展。核因子E2相关因子2 (nuclear erythroid 2-related factor 2, Nrf2)作为细胞内具有抗氧化功能的转录因子,在氧化应激、感染等条件下,与胞浆伴侣蛋白Keap-1解偶联后被磷酸化进而转位至细胞核,调节调控Ⅱ相解毒酶和抗氧化酶等基因表达,维持细胞稳态。Jian Z等 [25] 首次证实黑素细胞内Nrf2入核后可促进抗氧化酶–血红素氧合酶1(HO-1)基因的表达,从而提高细胞抗氧化能力。Mou K等 [24] 经体外细胞实验发现氧化应激时黑素细胞释放的HMGB1通过自分泌作用抑制自身Nrf2及下游HO1基因表达,削弱细胞抗氧化能力,从而加剧黑素细胞凋亡;而使用小干扰RNA(siRNA)沉默HMGB1基因表达,可减少黑素细胞自噬,增加P62蛋白表达,此时P62竞争性结合Keap-1,使Nrf2与之解离并进入细胞核,增强黑素细胞抗氧化能力,从而减少细胞损伤。

此外,胞外HMGB1还参与白癜风适应性免疫的活化与维持。Cui T等 [23] 研究发现,氧化应激时黑素细胞释放的HMGB1可通过旁分泌方式分别作用于角质形成细胞及树突状细胞,HMGB1与角质形成细胞表面的RAGE受体结合,激活下游NF-κB信号通路,诱导角质形成细胞分泌CXC趋化因子配体16 (CXCL16)和IL-8,其中CXCL16可促进CXCR6+CD8+T细胞向应激处皮肤迁移,导致黑素细胞发生免疫性损伤 [26];同时HMGB1与树突状细胞表面RAGE、TLR-2、TLR-4结合,促进树突状细胞成熟,增强其抗原提呈功能,从而促进其介导的CD8+T细胞活化,发挥靶向杀伤黑素细胞作用。见图2

Figure 2. Role of extracellular HMGB1 in vitiligo

图2. 胞外HMGB1在白癜风中的作用

3.2. 胞质HMGB1提高黑素细胞抗氧化能力

HMGB1具有细胞及亚细胞定位的特异性,不同于胞外HMGB1发挥的促炎作用,胞质HMGB1作用较复杂。Yu R等 [10] 发现肝细胞胞核HMGB1易位至胞质后,通过其A盒与病毒RNA正链结合,促进病毒在肝细胞内复制。而黑素细胞中的HMGB1可能具有保护作用,陈红 [27] 采用含HMGB1目的基因质粒的慢病毒分别感染正常人黑素细胞及白癜风患者黑素细胞系,使两系细胞都过表达HMGB1,与对照组比较,两种黑素细胞系的细胞凋亡比例明显下降,并检测到两系细胞Nrf2表达增加,Keap-1表达下降。生理情况下,Keap-1与核转录因子Nrf2偶联,抑制其向核转位,当Nrf2表达增多,Keap-1减少时,两者相对解偶联,此时Nrf2入核,调节靶基因的表达,从而提高细胞抗氧化能力,故推论黑素细胞过表达HMGB1通过提高细胞抗氧化能力来减少黑素细胞的损伤。

4. HMGB1在白癜风中的靶向治疗前景

HMGB1阻断疗法在帕金森病 [28]、缺血再灌注损伤 [29]、脓毒血症 [30] 等疾病动物模型中取得了一定疗效,可能为临床治疗炎症和自身免疫疾病提供新策略。目前靶向治疗在白癜风中取得了一定的进展,JAK (janus kinase,络氨酸酶)抑制剂通过阻断角质形成细胞内的JAK-STAT (signal transducer and activator of transcription,信号传导及转录激活蛋白)通路,抑制其释放趋化因子CXCL9、CXCL10,从而减少CD8+T细胞向皮损处迁移 [31],目前JAK抑制剂已进入临床药物实验阶段,系统 [32] 及外用 [33] JAK抑制剂均取得了一定的疗效。而本文中HMGB1参与白癜风发病机制之一为促进角质形成细胞分泌趋化因子并介导CD8+T细胞定期迁移,因此靶向HMGB1也许将有巨大的治疗前景。在国内外药物临床实验注册平台上进行检索,尚未找到登记注册的靶向HMGB1治疗白癜风的临床药物实验,也未检索到其在白癜风动物模型中的研究报道,目前靶向抑制HMGB1停留在体外细胞实验阶段。Mou K等 [24] 研究发现使用siRNA抑制黑素细胞HMGB1基因表达,抑制细胞释放HMGB1后,黑素细胞在氧化应激条件下损伤的数量明显减少。Cui T [23] 等人经实验证实抑制角质形成细胞表面的HMGB1受体-RAGE的表达或使用HMGB1中和抗体处理后,HMGB1刺激角质形成细胞分泌CXCL16的能力被显著削弱,而CXCL16分泌减少可降低CXCR6+CD8+T细胞向表皮的浸润程度 [26] [34]。因此,笔者推断阻断胞外HMGB1有希望实现多机制抑制白癜风的形成与发展,较其他单一机制抑制剂能达到更好的疗效,但仍需动物实验进一步证实。此外,对表皮黑素单元中两种细胞表面的其他HMGB1受体(如TLR2和TLR4)表达情况,其上下游信号通路及其功能的研究仍是一片空白,这些问题若未得到进一步研究,将限制HMGB1靶向治疗的在实际中的应用。

5. 小结

白癜风作为常见的自身免疫性色素脱失性疾病,随着相关研究不断深入,其治疗也取得了明显的进展。但目前的治疗仍存在起效慢、周期长、缓解后易复发等问题,这一局限也不断推动着研究的发展。HMGB1作为白癜风发病机制研究中新发现的分子,作用广泛,胞外HMGB1通过诱导细胞凋亡、活化与维持黑素细胞特异性的免疫应答等途径破坏黑素细胞,而胞质中HMGB1则发挥保护黑素细胞作用。由此可见,HMGB1在表皮黑素单元中的作用同样具有亚细胞定位的异质性,靶向胞外HMGB1有希望成为潜在的治疗靶点,但是这些仅为体外细胞实验的结果,仍需动物实验进一步证实。此外,黑素及角质形成细胞表面其他HMGB1受体的定位、活性、功能检测还有待研究,唯有不断深入探讨,才能更好地为今后的靶标治疗提供理论依据。

文章引用

冯丁夏,肖异珠. 高迁移率族蛋白1在白癜风中的研究进展
Research Advances of HMGB1 in Vitiligo[J]. 生物医学, 2022, 12(03): 143-149. https://doi.org/10.12677/HJBM.2022.123018

参考文献

  1. 1. 王晓艳, 王婷琳, 周城, 等. 中国六省市白癜风流行病学调查[J]. 中华皮肤科杂志, 2010, 43(7): 463-466.

  2. 2. Jadeja, S.D., Mayatra, J.M., Vaishnav, J., et al. (2021) A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis. Frontiers in Immunology, 11, Article ID: 624566. https://doi.org/10.3389/fimmu.2020.624566

  3. 3. Blair, R.H., Horn, A.E., Pazhani, Y., et al. (2016) The HMGB1 C-Terminal Tail Regulates DNA Bending. Journal of Molecular Biology, 428, 4060-4072. https://doi.org/10.1016/j.jmb.2016.08.018

  4. 4. Yang, H., Lundbäck, P., Ottosson, L., et al. (2021) Redox Modifications of Cysteine Residues Regulate the Cytokine Activity of HMGB1. Molecular Medicine, 27, 58. https://doi.org/10.1186/s10020-021-00307-1

  5. 5. Senda, N., Yanai, H., Hibino, S., et al. (2021) HMGB1-Mediated Chromatin Remodeling Attenuates IL24 Gene Expression for the Protection from Allergic Contact Dermatitis. Proceedings of the National Academy of Sciences, 118, e2022343118. https://doi.org/10.1073/pnas.2022343118

  6. 6. Kim, Y.H., Kwak, M.S., Park, J.B., et al. (2016) N-Linked Glycosylation Plays a Crucial Role in the Secretion of HMGB1. Journal of Cell Science, 129, 29. https://doi.org/10.1242/jcs.176412

  7. 7. Kwak, M.S., Kim, H.S., Lee, B., et al. (2020) Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Frontiers in Immunology, 11, Article No. 1189. https://doi.org/10.3389/fimmu.2020.01189

  8. 8. Tang, D., Kang, R., Livesey, K.M., et al. (2010) Endogenous HMGB1 Regulates Autophagy. Journal of Cell Biology, 190, 881-892. https://doi.org/10.1083/jcb.200911078

  9. 9. Huebener, P., Gwak, G.Y., Pradere, J.P., et al. (2014) High-Mobility Group Box 1 Is Dispensable for Autophagy, Mitochondrial Quality Control, and Organ Function in Vivo. Cell Metabolism, 19, 539-547. https://doi.org/10.1016/j.cmet.2014.01.014

  10. 10. Yu, R., Yang, D., Lei, S., et al. (2015) HMGB1 Promotes Hepatitis c Virus Replication by Interaction with Stem-Loop 4 in the Viral 5’ Untranslated Region. Journal of Virology, 90, 2332-2344. https://doi.org/10.1128/JVI.02795-15

  11. 11. Paudel, Y.N., Angelopoulou, E., Piperi, C., et al. (2019) Enlightening the Role of High Mobility Group Box 1 (HMGB1) in Inflammation: Updates on Receptor Signaling. European Journal of Pharmacology, 858, Article ID: 172487. https://doi.org/10.1016/j.ejphar.2019.172487

  12. 12. Nakamura, Y., Fukuta, A., Miyashita, K., et al. (2021) Perineural High-Mobility Group Box 1 Induces Mechanical Hypersensitivity through Activation of Spinal Microglia: Involvement of Glutamate-NMDA Receptor Dependent Mechanism in Spinal Dorsal Horn. Biochemical Pharmacology, 186, Article ID: 114496. https://doi.org/10.1016/j.bcp.2021.114496

  13. 13. Zuo, T., Yue, Y., Wang, X., et al. (2021) Luteolin Relieved DSS-Induced Colitis in Mice via HMGB1-TLR-NF-κB Signaling Pathway. Inflammation, 44, 570-579. https://doi.org/10.1007/s10753-020-01354-2

  14. 14. Fan, H., Tang, H.B., Chen, Z., et al. (2020) Inhibiting HMGB1-RAGE Axis Prevents Pro-Inflammatory Macrophages/microglia Polarization and Affords Neuroprotection after Spinal Cord Injury. Journal of Neuroinflammation, 17, 295. https://doi.org/10.1186/s12974-020-01973-4

  15. 15. He, C., Sun, S., Zhang, Y., et al. (2021) The Role of Irreversible Electroporation in Promoting M1 Macrophage Polarization via Regulating the HMGB1-RAGE-MAPK Axis in Pancreatic Cancer. Oncoimmunology, 10, Article ID: 1897295. https://doi.org/10.1080/2162402X.2021.1897295

  16. 16. Feng, X., Yang, R., Tian, Y., et al. (2020) HMGB1 Protein Promotes Glomerular Mesangial Matrix Deposition via TLR2 in Lupus Nephritis. Journal of Cellular Physiology, 235, 5111-5119. https://doi.org/10.1002/jcp.29379

  17. 17. Wang, X., Li, Z., Bai, Y., et al. (2021) A Small Molecule Binding HMGB1 Inhibits Caspase-11-Mediated Lethality in Sepsis. Cell Death & Disease, 12, 402. https://doi.org/10.1038/s41419-021-03652-5

  18. 18. Ning, J., Yang, R., Wang, H., et al. (2021) HMGB1 Enhances Chemotherapy Resistance in Multiple Myeloma Cells by Activating the Nuclear Factor-κB Pathway. Experimental and Therapeutic Medicine, 22, 705. https://doi.org/10.3892/etm.2021.10137

  19. 19. Li, B., Yi, X., Zhuang, T., et al. (2021) RIP1-Mediated Necroptosis Facilitates Oxidative Stress-Induced Melanocyte Death, Offering Insight into Vitiligo. Journal of Investigative Dermatology, 141, 2921-2931. https://doi.org/10.1016/j.jid.2020.06.042

  20. 20. Wahid, A., Chen, W., Wang, X., et al. (2021) High-Mobility Group Box 1 Serves as an Inflammation Driver of Cardiovascular Disease. Biomedicine & Pharmacotherapy, 139, Article ID: 111555. https://doi.org/10.1016/j.biopha.2021.111555

  21. 21. Wang, Z., Zhou, H., Zheng, H., et al. (2021) Autophagy-Based Unconventional Secretion of HMGB1 by Keratinocytes Plays a Pivotal Role in Psoriatic Skin Inflammation. Autophagy, 17, 529-552. https://doi.org/10.1080/15548627.2020.1725381

  22. 22. Kim, J.Y., Lee, E.J., Seo, J., et al. (2017) Impact of High-Mobility Group Box 1 on Melanocytic Survival and Its Involvement in the Pathogenesis of Vitiligo. British Journal of Dermatology, 176, 1558-1568. https://doi.org/10.1111/bjd.15151

  23. 23. Cui, T., Zhang, W., Li, S., et al. (2019) Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo. Journal of Investigative Dermatology, 139, 2174-2184. https://doi.org/10.1016/j.jid.2019.03.1148

  24. 24. Mou, K., Liu, W., Miao, Y., et al. (2018) HMGB1 Deficiency Reduces H2O2-Induced Oxidative Damage in Human Melanocytes via the Nrf2 Pathway. Journal of Cellular and Molecular Medicine, 22, 6148-6156. https://doi.org/10.1111/jcmm.13895

  25. 25. Jian, Z., Li, K., Song, P., et al. (2014) Impaired Activation of the Nrf2-ARE Signaling Pathway Undermines H2O2-Induced Oxidative Stress Response: A Possible Mechanism for Melanocyte Degeneration in Vitiligo. Journal of Investigative Dermatology, 134, 2221-2230. https://doi.org/10.1038/jid.2014.152

  26. 26. Li, S., Zhu, G., Yang, Y., et al. (2017) Oxidative Stress Drives CD8+ T-Cell Skin Trafficking in Patients with Vitiligo through CXCL16 Upregulation by Activating the Unfolded Protein Response in Keratinocytes. Journal of Allergy and Clinical Immunology, 140, 177-189.e9. https://doi.org/10.1016/j.jaci.2016.10.013

  27. 27. 陈红. 氧化应激下白癜风黑素细胞转染HMGB1相关变化研究[D]: [硕士学位论文]. 张家口: 河北北方学院, 2019.

  28. 28. Lv, R., Du, L., Liu, X., et al. (2019) Rosmarinic Acid Attenuates Inflammatory Responses through Inhibiting HMGB1/TLR4/NF-κB Signaling Pathway in a Mouse Model of Parkinson’s Disease. Life Sciences, 223, 158-165. https://doi.org/10.1016/j.lfs.2019.03.030

  29. 29. Zhao, G., Fu, C., Wang, L., et al. (2017) Down-Regulation of Nuclear HMGB1 Reduces Ischemia-Induced HMGB1 Translocation and Release and Protects against Liver Ischemia-Reperfusion Injury. Scientific Reports, 7, Article No. 46272. https://doi.org/10.1038/srep46272

  30. 30. Chen, G., Hou, Y., Li, X., et al. (2021) Sepsis-Induced Acute Lung Injury in Young Rats Is Relieved by Calycosin through Inactivating the HMGB1/MyD88/NF-κB Pathway and NLRP3 Inflammasome. International Immunopharmacology, 96, Article ID: 107623. https://doi.org/10.1016/j.intimp.2021.107623

  31. 31. Harris, J.E., Harris, T.H., Weninger, W., et al. (2012) A Mouse Model of Vitiligo with Focused Epidermal Depigmentation Requires IFN-γ for Autoreactive CD8⁺ T-Cell Accumulation in the Skin. Journal of Investigative Dermatology, 132, 1869-1876. https://doi.org/10.1038/jid.2011.463

  32. 32. Kim, S.R., Heaton, H., Liu, L.Y., et al. (2018) Rapid Repigmentation of Vitiligo Using Tofacitinib plus Low-Dose, Narrowband UV-B Phototherapy. JAMA Dermatology, 154, 370-371. https://doi.org/10.1001/jamadermatol.2017.5778

  33. 33. Joshipura, D., Alomran, A., Zancanaro, P., et al. (2018) Treatment of Vitiligo with the Topical Janus Kinase Inhibitor Ruxolitinib: A 32-Week Open-Label Extension Study with Optional Narrow-Band Ultraviolet B. Journal of the American Academy of Dermatology, 78, 1205-1207.e1. https://doi.org/10.1016/j.jaad.2018.02.023

  34. 34. He, S., Xu, J. and Wu, J. (2022) The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 8796735. https://doi.org/10.1155/2022/8796735

期刊菜单