﻿ 一种基于模糊运算的车辆防撞预警系统设计 A Vehicle Collision Warning System Based on Fuzzy Arithmetic

Computer Science and Application
Vol.07 No.09(2017), Article ID:21881,9 pages
10.12677/CSA.2017.79092

A Vehicle Collision Warning System Based on Fuzzy Arithmetic

Fuyang Zhang, Quanbin Li*

College of Physics and Electronics Engineering, Jiangsu Normal University, Xuzhou Jiangsu

Received: Aug. 5th, 2017; accepted: Aug. 21st, 2017; published: Aug. 31st, 2017

ABSTRACT

This article puts forward a kind of intelligent vehicle collision warning system based on fuzzy logic. Firstly, according to the characteristics of dynamic environment, which are not easy to detect, the dynamic obstacle avoidance rule base is established. The problem of obstacle avoidance of intelligent vehicle in dynamic environment is described and answered by using Fish Swarm Algorithm. Secondly, the fuzzy function model is established on basis of two factors: the distance between the intelligent vehicle and the obstacle and the time of the driver’s reflection. If the driver does not respond to warning timely, the system will adopt the best optimal route to stop the vehicle. The experimental result shows that the system can make a reasonable choice in accord with changes of the environment in making a warning or triggering an active obstacle avoidance.

Keywords:Fuzzy Logic, Fish Swarm Algorithm, Warning System, Active Obstacle Avoidance

1. 引言

2. 总体设计

3. 路径规划问题

Figure 1. Design diagram

4. 预警防撞原理

1) 障碍物静止

(1)

2) 障碍物相对于智能小车减速行驶

Figure 2. A partial grid path of the road

Figure 3. Diagram of the collision avoidance warning

Figure 4. Brake process of automobiles

Table 1. Definition of collision rules

Table 2. Constraint rules

(2)

3) 障碍物相对于智能小车匀速或加速行驶

(3)

Figure 5. Driving type function

Table 3. Input-output variables

5. 硬件电路设计

5.1. 信息采集模块

5.2. 预警模块

ISD4004系列工作电压3 V，具有音质好的特点，并且适用于本文中智能小车的移动。芯片采用CMOS技术，具有以下优点：内含振荡器、防混淆滤波器、平滑滤波器、音频放大器、自动静噪及高密度多电平闪烁存贮陈列。

Figure 6. Interface circuit between TMS 320F 2812 and AD7656

Figure 7. Circuit diagram of the voice alarm system

6. 实验结果

6.1. 传感器

6.2. 实验过程

1) 测距功能测试：改变信息采集模块与前方障碍物之间的距离，将电路测量值和实际测量值进行比较。具体过程是在图8中A处的智能小车所在轨道内设置15个采样点，分别进行电路测量和实际测量。测量数据显示距离检测误差不超过2.5%。实验表明，信息采集模块测距功能较为精确。

Figure 8. The location of obstacles

2) 选择性避障功能测试：启动A处智能小车，统计小车在20个不同采样点处的避障误差情况。其中，10个采样处操作者在系统发出预警时对智能小车发出指令。试验表明，避障误差不超过2%。实验表明，该系统的选择性避障功能较为完善。

7. 结论

A Vehicle Collision Warning System Based on Fuzzy Arithmetic[J]. 计算机科学与应用, 2017, 07(09): 805-813. http://dx.doi.org/10.12677/CSA.2017.79092

1. 1. Li, L., Lu, G., Wang, Y., et al. (2014) A Rear-End Collision Avoidance System of Connected Vehicles. IEEE International Conference on Intelligent Transportation Systems, Qingdao, 8-11 October 2014, 63-68.

2. 2. 刘祖兵, 袁亮, 蒋伟. 基于模糊逻辑的移动机器人避障研究[J]. 机械设计与制造, 2017(3): 101-104.

3. 3. 黄宜庆, 彭凯, 袁梦茹. 基于多策略混合人工鱼群算法的移动机器人路径规划[J]. 信息与控制, 2017, 46(3): 283- 288.

4. 4. Liu, C.G., Chang, J.G., et al. (2009) Path Planning for Mobile Robot Based on an Improved Probabilistic Roadmap Method. Chinese Journal of Electronics, 18, 395-399.

5. 5. 柳长安, 鄢小虎, 刘春阳, 等. 基于改进蚁群算法的移动机器人动态路径规划方法[J]. 电子学报, 2011, 39(5): 1220-1224.

6. 6. Yin, L., Yin, Y. and Lin, C.J. (2010) A New Potential Field Method for Mobile Robot Path Planning in the Dynamic Environments. Asian Journal of Control, 11, 214-225. https://doi.org/10.1002/asjc.98

7. 7. 颜明重, 黄冰逸, 朱大奇. 基于神经动力学的水下目标观测路径规划[J]. 船海工程, 2017, 46(2): 103-107.

8. 8. 刘二辉, 姚锡凡. 基于改进遗传算法的自动导引小车路径规划及其实现平台[J]. 计算机集成制造系统, 2017, 23(3): 465-472.

9. 9. 卢月品, 赵阳, 孟跃强, 等. 基于改进遗传算法的狭窄空间路径规划[J]. 计算机应用研究, 2015(2): 413-418.

10. 10. 徐晓晴, 朱庆保. 动态环境下基于多人工鱼群算法和避碰规则库的机器人路径规划[J]. 电子学报, 2012, 40(8): 1694-1700.

11. 11. 吴经贤, 李颖, 胡妮娜, 等. 一种基于AT89S52的车辆防追尾预警系统设计[J]. 集美大学学报(自然版), 2017, 22(1): 53-60.

12. 12. 唐阳山, 夏道华. 驾驶员对汽车防撞安全距离检测仿真研究[J]. 计算机仿真, 2016, 33(7): 449-453.

13. 13. 王振华. 自适应模糊逻辑交通灯管理系统的设计[J]. 电子设计工程, 2017, 5(2): 175-177.

14. 14. 张立朝, 赵鹏, 张合朝, 等. 用于空间分析的栅格中间层构建流程与方法研究[J]. 测绘科学技术学报, 2016, 33(2): 196-200.

15. NOTES

*通讯作者。