Advances in Analytical Chemistry
Vol. 12  No. 02 ( 2022 ), Article ID: 49906 , 6 pages
10.12677/AAC.2022.122006

Ti-MWW分子筛的合成进展

徐稳*,汪晓淑,侯威龙

浙江师范大学含氟新材料研究所,浙江 金华

收稿日期:2022年3月3日;录用日期:2022年3月16日;发布日期:2022年3月30日

摘要

Ti-MWW分子筛的合成方法主要包括后处理合成法、水热合成法、干胶合成法和双模板合成法。通过对Ti-MWW分子筛改性,可以提高其催化性能,特别是在选择性氧化反应中表现出优异的催化活性。本文总结了Ti-MWW分子筛的合成方法及其改性方法。

关键词

Ti-MWW,分子筛,合成,改性

Progress in Synthesis of Ti-MWW

Wen Xu*, Xiaoshu Wang, Weilong Hou

Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua Zhejiang

Received: Mar. 3rd, 2022; accepted: Mar. 16th, 2022; published: Mar. 30th, 2022

ABSTRACT

The synthesis methods of Ti-MWW zeolites mainly include post-synthesis, hydrothermal synthesis, dry gel conversion and dual structure-directing agents synthesis. The modification of Ti-MWW can improve catalytic performance, especially in selective oxidations. The synthesis and modification methods of Ti-MWW are summarized in this paper.

Keywords:Ti-MWW, Zeolite, Synthesis, Modify

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

1756年,瑞典矿物学家克隆斯特发现一种低密度矿石,其在水中煮沸时会冒泡,故将其叫做沸石。沸石分子筛是结晶态的硅铝酸盐或硅酸盐,铝氧四面体或硅氧四面体通过氧桥键相连形成了具有分子尺寸大小的孔道和空腔。而杂原子分子筛是分子筛骨架中的元素被杂原子(磷、硼、铁、铬和钛等)取代,杂原子的引入改善了分子筛的吸附、酸性和催化等性能。1983年,Taramasso等 [1] 首次合成了骨架中含有过渡态金属钛原子的TS-1分子筛,开创了含钛分子筛的先河。TS-1分子筛在苯或苯酚羟基化 [2] [3]、烯烃环氧化 [4] [5]、醛酮氨氧化 [6] [7] 和胺类 [8] [9] 氧化反应中,表现出优异的择形催化氧化性能。然而,TS-1分子筛在催化大分子反应中表现出较低活性,这是因为TS-1分子筛的孔道直径为0.55 nm,大分子反应物无法进入分子筛孔道内与骨架中的钛活性中心发生反应。此外,TS-1分子筛以价格较昂贵的四丙基氢氧化铵(TPAOH)为结构导向剂,这导致TS-1的生产成本较高。

因此,为了满足不同的反应需求,科研人员相继合成了各种拓扑结构的钛硅分子筛。而孔道结构更加开放的Ti-MWW分子筛在一众钛硅分子筛中脱颖而出。Ti-MWW分子筛是具有MWW型拓扑结构的含钛分子筛。如图1所示,Ti-MWW分子筛具有两个相互独立的10元环孔道,层间有一个12元环超笼结构(0.71 nm × 1.81 nm),晶体外表面有一个12元环碗状空穴结构(0.71 nm × 0.71 nm) [10] [11]。因此,Ti-MWW分子筛在催化反应中同时表现出10元环和12元环的结构特点。

Figure 1. Topology of MWW zeolite

图1. MWW型分子筛的拓扑结构

基于Ti-MWW分子筛独特的孔道结构,其可高效催化一系列有机物的选择性氧化反应,如烯烃的环氧化反应 [12] [13] [14] [15]、醛酮的氨氧化反应 [16] [17] 以及硫醚类 [18] 和吡啶类 [19] 的氧化反应。其中,Ti-MWW/H2O2催化体系已经在丁酮氨氧化制丁酮肟中实现了工业化应用。本文总结了Ti-MWW分子筛的合成方法及其改性方法。

2. 合成方法

Ti-MWW分子筛的合成方法主要包括后处理合成法、水热合成法、干胶合成法和双模板合成法。

2.1. 后处理合成法

硅与过渡金属钛存在明显差异(如原子半径、电负性、电子层结构和极化能力等方面),这导致钛很难进入MWW分子筛骨架中,故直接合成Ti-MWW分子筛更是困难。早期合成Ti-MWW分子筛的方法主要是后处理合成法。2000年,Mobil公司 [20] 使用TiCl4对MCM-22分子筛进行后处理,首次成功合成含钛MWW分子筛,但其在液相反应中钛活性中心容易流失,重复利用率和催化性能并不理想。

结构可逆变换法是最经典的后处理合成法 [21],该方法以脱硼的MWW分子筛为硅源,与六亚甲基亚胺(HMI)或哌啶(PI)、钛酸四丁酯(TBOT)和H2O按照一定比例混合均匀后,在高温高压的条件下合成Ti-MWW层状前驱体。在此过程中,MWW型分子筛的3D结构转化为2D层状结构,分子筛的层间距增大,有利于钛原子进入Ti-MWW分子筛骨架中。然而该方法合成的分子筛以非骨架八面体钛物种为主,需要酸处理脱除非骨架钛物种。此外,该方法制备过程较为复杂。

Jin等 [22] 使用TiCl4蒸汽对脱硼MWW分子筛进行处理,成功合成了Ti-MWW分子筛。并且其在环己烯叔丁基过氧化氢环氧化反应中具有催化活性,这是因为MWW分子筛不仅拥有两个相互独立的10元环孔道,还包含12元环超笼和12元环碗状孔穴结构,为大分子反应物提供了更大的空间。目前报道的采用后处理合成法制备的钛硅分子筛都存在一些缺点,如合成条件苛刻且操作较为复杂、易形成非骨架钛物种和稳定性较差等。

2.2. 水热合成法

目前,水热合成法是最常用的制备沸石分子筛的方法。Wu等 [23] [24] 采用硼酸为助晶化剂,向水热体系中加入模板剂(六亚甲基亚胺或哌啶)和钛源(钛酸四丁酯),在高温高压条件下合成Ti-MWW层状前驱体。对层状前驱体进行酸处理和高温焙烧后可以得到具有3D结构的Ti-MWW分子筛。在合成过程中,硼酸不仅促进了分子筛晶化,还有助于钛原子进入分子筛骨架中 [25] [26]。但是,水热法合成Ti-MWW需要加入过量硼酸(Si/B = 0.75),硼物种会增加分子筛骨架的电负性,进而影响钛活性中心的催化性能,而酸处理可以脱除分子筛骨架中的硼,消除骨架中硼原子的不利影响,获得高催化性能Ti-MWW分子筛。并且酸处理后的Ti-MWW分子筛仍然保留高比表面积和钛含量。

2.3. 干胶合成法

为了降低硼酸的用量,Wu等 [27] 采用干胶法制备Ti-MWW分子筛。干胶法是将气态二氧化硅(或硅胶),钛酸四丁酯,硼酸和H2O按照一定比例混合,然后加热蒸发水分得到干胶,再将干胶研磨成细粉,将其置于六亚甲基亚胺或者哌啶蒸汽中晶化一定时间后得到Ti-MWW层状前驱体。干胶体系中不存在水,硼含量较高,这可能是干胶法所需硼酸较少的原因。相比于水热合成法,干胶法虽然减少了硼酸用量,但分子筛晶体尺寸扩大了10~20倍,这无疑增大了底物分子和产物分子的扩散阻力。因此,干胶法合成的Ti-MWW分子筛在1-己烯环氧化反应中的催化性能较低。

2.4. 双模板合成法

双模板法是采用六亚甲基亚胺(HMI)和N,N,N-三甲基-1-金刚烷基氢氧化铵(TMAadOH)为模板剂,在水热条件下合成无硼Ti-MWW分子筛的方法。Corma等 [28] 使用HMI和TMAadOH合成了全硅MWW分子筛ITQ-1。基于ITQ-1分子筛的制备方法,Liu等 [29] 使用双模板剂(TMAadOH和HMI),在K+辅助下晶化,成功合成了无硼Ti-MWW分子筛,其中HMI主要起到了导向、填充层内十元环孔道的作用,而较大的TMAadOH分子,起到了稳定层间结构的作用。与水热合成法相比,双模板法合成的Ti-MWW分子筛晶体尺寸没有明显变化。但是碱金属阳离子会毒化钛活性中心,降低分子筛的催化活性;当合成过程中不添加碱金属阳离子时,分子筛又无法晶化。并且TMAadOH的价格昂贵,双模板法合成Ti-MWW分子筛的成本较高。

3. Ti-MWW改性策略

为了满足不同的反应需求,可以对Ti-MWW进行改性,调整分子筛的结构及性质。常用的改性策略主要有氟改性,金属离子改性,有机溶剂洗涤改性和扩孔改性等。

Lu等 [30] 采用NH4F对Ti-MWW分子筛进行处理,合成了F-Ti-MWW分子筛。F进入分子筛骨架中生成了SiO3/2F物种,增强了相邻钛活性中心的正电性。并且Ti-Oα-Oβ-Hend中间体中的Hend与邻近的Si-F物种之间可形成氢键,这显著提高了乙烯与H2O2环氧化的催化活性。此外,氟改性产生的介孔有助于提高微孔内钛活性中心的可接触性,从而使F-Ti-MWW具有比Ti-MWW催化剂更好的循环使用性能。

Zhao等 [31] 发现制备条件对Ti-MWW分子筛的疏水性和催化活性具有显著影响。特别是是层状前驱体的洗涤条件会影响层间硅羟基的缩合,进而改变分子筛的疏水性和氧化性能。研究结果表明,用乙醇代替水洗涤层状前驱体,能使层间硅羟基缩合和层间距的减小同步进行。并且较低的干燥温度和酸处理温度均有利于合成高疏水性和高催化活性的Ti-MWW分子筛。

另外,K+改性 [32] 可以提高分子筛活化双氧水的能力,增强其在烯烃环氧化中的催化性能;层间扩孔改性 [33] 能增大分子筛的孔径或比表面积,提高Ti-MWW的催化反应性能。

4. 结论

Ti-MWW分子筛以其独特的孔道结构在催化氧化反应中表现出优异的催化性能,并且在一些反应中表现出优于TS-1的活性。特别是Ti-MWW/H2O2催化体系具有副产物只有水的优点,符合新时代绿色化学的发展理念。但是Ti-MWW分子筛的合成仍存在一些问题。水热合成法是合成Ti-MWW分子筛最常用、最经典的方法,但是存在合成周期较长和合成过程引入过量硼酸等问题。虽然通过改性能提高Ti-MWW分子筛的催化性能,但往往合成步骤比较繁琐。因此,绿色、高效Ti-MWW分子筛的合成方法仍是科研人员关注的焦点。

文章引用

徐 稳,汪晓淑,侯威龙. Ti-MWW分子筛的合成进展
Progress in Synthesis of Ti-MWW[J]. 分析化学进展, 2022, 12(02): 41-46. https://doi.org/10.12677/AAC.2022.122006

参考文献

  1. 1. Taramasso, M.P.G. and Notari, B. (1983) Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides. United States Patent 4410501.

  2. 2. Thangaraj, A., Kumar, R. and Ratnasamy, P. (1991) Catalytic Properties of Crystalline Titanium Silicalites. II, Hydroxylation of Phenol with Hydrogen Peroxide over TS-1 Zeolites. Journal of Catalysis, 131, 294-297.
    https://doi.org/10.1016/0021-9517(91)90347-7

  3. 3. Tuel, A., Moussa-Khouzami, S., Taarit, Y.B. and Naccache, C. (1991) Hydroxylation of Phenol over TS-1: Surface and Solvent Effects. Journal of Molecular Catalysis, 68, 45-52.
    https://doi.org/10.1016/0304-5102(91)80060-G

  4. 4. Gleeson, D., Sankar, G., Catlow, C.R.A., Thomas, J.M., Spanó, G., Bordiga, S., Zecchina, A. and Lamberti, C. (2000) The Architecture of Catalytically Active Centers in Titanosilicate (TS-1) and Related Selective-Oxidation Catalysts. Physical Chemistry Chemical Physics, 2, 4812-4817.
    https://doi.org/10.1039/b005780k

  5. 5. Jiao, W., He, Y., Li, J., Wang, J., Tatsumi, T. and Fan, W. (2015) Ti-Rich TS-1: A Highly Active Catalyst for Epoxidation of Methallyl Chloride to 2-Methyl Epichlorohydrin. Applied Catalysis A: General, 491, 78-85.
    https://doi.org/10.1016/j.apcata.2014.11.030

  6. 6. Pozzo, L., Fornasari, G. and Monti, T. (2002) TS-1 Catalytic Mechanism in Cyclohexanone Oxime Production. Catalysis Communications, 3, 369-375.
    https://doi.org/10.1016/S1566-7367(02)00145-0

  7. 7. Li, Z., Chen, R., Xing, W., Jin, W. and Xu, N. (2010) Continuous Acetone Ammoximation over TS-1 in a Tubular Membrane Reactor. Industrial & Engineering Chemistry Research, 49, 6309-6316.
    https://doi.org/10.1021/ie901912e

  8. 8. Reddy, J.S. and Jacobs, P.A. (1996) Selective Oxidation of Secondary Amines over Titanium Silicalite Molecular Sieves, TS-1 and TS-2. Catalysis Letters, 37, 213-216.
    https://doi.org/10.1007/BF00807756

  9. 9. Gontier, S. and Tuel, A. (1994) Oxidation of Aniline over TS-1, the Titanium Substituted Silicalite-1. Applied Catalysis A: General, 118, 173-186.
    https://doi.org/10.1016/0926-860X(94)80312-9

  10. 10. Leonowicz, M.E., Lawton, J.A., Lawton, S.L. and Rubin, M.K. (1994) MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264, 1910-1913.
    https://doi.org/10.1126/science.264.5167.1910

  11. 11. Lawton, S.L., Leonowicz, M.E., Partridge, R.D., Chu, P. and Rubin, M.K. (1998) Twelve-Ring Pockets on the External Surface of MCM-22 Crystals. Microporous and Mesoporous Materials, 23, 109-117.
    https://doi.org/10.1016/S1387-1811(98)00057-2

  12. 12. Yin, J., Xu, H., Wang, B., Tian, W., Yin, J., Jiang, J. and Wu, P. (2020) Highly Selective 1-Pentene Epoxidation over Ti-MWW with Modified Micro-Environment of Ti Active Sites. Catalysis Science & Technology, 10, 6050-6064.
    https://doi.org/10.1039/D0CY00478B

  13. 13. Wu, P., Nuntasri, D., Liu, Y., Wu, H., Jiang, Y., Fan, W., He, M. and Tatsumi, T. (2006) Selective Liquid-Phase Oxidation of Cyclopentene over MWW Type Titanosilicate. Catalysis Today, 117, 199-205.
    https://doi.org/10.1016/j.cattod.2006.05.014

  14. 14. Tang, K., Hou, W., Wang, X., Xu, W., Lu, X., Ma, R., Fu, Y. and Zhu, W. (2021) Enhanced Catalytic Performance of Trimethylsilylated Ti-MWW Zeolites for the Liquid-Phase Epoxidation of Propylene with H2O2. Microporous and Mesoporous Materials, 328, 111492-111501.
    https://doi.org/10.1016/j.micromeso.2021.111492

  15. 15. Huo, Y., Zhang, Y., Xu, W., Tang, K., Lu, X., Ma, R., Fu, Y. and Zhu, W. (2020) Acid-Modulated Synthesis of Ti-MWW Zeolites with Rich Framework Ti Species for Efficient Epoxidation. Industrial & Engineering Chemistry Research, 59, 19929-19937.
    https://doi.org/10.1021/acs.iecr.0c03518

  16. 16. Ding, J., Xu, L., Yu, Y., Wu, H., Huang, S., Yang, Y. and Wu, J. (2013) Clean Synthesis of Acetaldehyde Oxime through Ammoximation on Titanosilicate Catalysts. Catalysis Science & Technology, 3, 2587-2595.
    https://doi.org/10.1039/c3cy00471f

  17. 17. Ding, J. and Wu, P. (2014) Selective Synthesis of Dimethyl Ketone Oxime through Ammoximation over Ti-MOR Catalyst. Applied Catalysis A: General, 488, 86-95.
    https://doi.org/10.1016/j.apcata.2014.09.038

  18. 18. Gao, G., Cheng, S., An, Y., Si, X., Fu, X., Liu, Y., Zhang, H., Wu, P. and He, M.Y. (2010) Oxidative Desulfurization of Aromatic Sulfur Compounds over Titanosilicates. ChemCatChem, 2, 459-466.
    https://doi.org/10.1002/cctc.200900073

  19. 19. Xie, W., Zheng, Y., Zhao, S., Yang, J., Liu, Y. and Wu, P. (2010) Selective Oxidation of Pyridine to Pyridine-N-Oxide with Hydrogen Peroxide over Ti-MWW Catalyst. Catalysis Today, 157, 114-118.
    https://doi.org/10.1016/j.cattod.2010.02.045

  20. 20. Levin, D., Cynwyd, B. and Chang, C.D., et al. (2000) Olefin Epoxidation Catalysts. United States Patent 6114551.

  21. 21. Wu, P. and Tatsumi, T. (2002) Preparation of B-Free Ti-MWW through Reversible Structural Conversion. Chemical Communications, 10, 1026-1027.
    https://doi.org/10.1039/b201170k

  22. 22. Yan, M., Jin, F., Ding, Y., Wu, G., Chen, R., Wang, L. and Yan, Y. (2019) Synthesis of Titanium-Incorporated MWW Zeolite by Sequential Deboronation and Atom-Planting Treatment of ERB-1 as an Epoxidation Catalyst. Industrial & Engineering Chemistry Research, 58, 4764-4773.
    https://doi.org/10.1021/acs.iecr.8b05836

  23. 23. Wu, P., Tatsumi, T., Komatsu, T. and Yashima, T. (2001) A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations. The Journal of Physical Chemistry B, 105, 2897-2905.
    https://doi.org/10.1021/jp002816s

  24. 24. Wu, P., Tatsumi, T., Komatsu, T. and Tatsuaki, Y. (2000) Hydrothermal Synthesis of a Novel Titanosilicate with MWW Topoloy. Chemistry Letters, 29, 774-775.
    https://doi.org/10.1246/cl.2000.774

  25. 25. Wang, Y., Zhou, D., Yang, G., Miao, S., Liu, X. and Bao, X. (2004) A DFT Study on Isomorphously Substituted MCM-22 Zeolite. The Journal of Physical Chemistry A, 108, 6730-6734.
    https://doi.org/10.1021/jp0376875

  26. 26. Zhou, D., Zhang, H., Zhang, J., Sun, X., Li, H., He, N. and Zhang, W. (2014) Density Functional Theory Investigations into the Structure and Spectroscopic Properties of the Ti4+ Species in Ti-MWW Zeolite. Microporous and Mesoporous Materials, 195, 216-226.
    https://doi.org/10.1016/j.micromeso.2014.04.037

  27. 27. Wu, P., Miyaji, T., Liu, Y., He, M. and Tatsumi, T. (2005) Synthesis of Ti-MWW by a Dry-Gel Conversion Method. Catalysis Today, 99, 233-240.
    https://doi.org/10.1016/j.cattod.2004.09.045

  28. 28. Camblor, M.A., Corma, A. and Díaz-Cabañas, M.J. (1998) Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102, 44-51.
    https://doi.org/10.1021/jp972319k

  29. 29. Liu, N., Liu, Y., Xie, W., Wang, L., He, M. and Wu, P. (2007) Hydrothermal Synthesis of Boron-Free Ti-MWW with Dual Structure-Directing Agents. Studies in Surface Science and Catalysis, 170, 464-469.
    https://doi.org/10.1016/S0167-2991(07)80877-9

  30. 30. Lu, X., Zhou, W.J., Guan, Y., Liebens, A. and Wu, P. (2017) Enhancing Ethylene Epoxidation of a MWW-Type Titanosilicate/H2O2 Catalytic System by Fluorine Implanting. Catalysis Science & Technology, 7, 2624-2631.
    https://doi.org/10.1039/C7CY00428A

  31. 31. Zhao, H., Yokoi, T., Kondo, J.N. and Tatsumi, T. (2015) Hydrophobicity Enhancement of Ti-MWW Catalyst and Its Improvement in Oxidation Activity. Applied Catalysis A: General, 503, 156-164.
    https://doi.org/10.1016/j.apcata.2015.07.003

  32. 32. Yu, Y., Tang, Z., Liu, W., Wang, J., Chen, Z., Shen, K., Wang, R., Liu, H., Huang, X. and Liu, Y. (2019) Enhanced Catalytic Oxidation Performance of K+-Modified Ti-MWW through Selective Breaking of Interfacial Hydrogen-Bonding Interactions of H2O2. Applied Catalysis A: General, 587, Article ID: 117270.
    https://doi.org/10.1016/j.apcata.2019.117270

  33. 33. Wang, L., Wang, Y., Liu, Y., Wu, H., Li, X., He, M. and Wu, P. (2009) Alkoxysilylation of Ti-MWW Lamellar Precursors into Interlayer Pore-Expanded Titanosilicates. Journal of Materials Chemistry, 19, 8594-8602.
    https://doi.org/10.1039/b910886f

  34. NOTES

    *通讯作者。

期刊菜单