﻿ 智能微网中逆变器拓扑及控制策略综述 Review of Inverter Topology and Control Strategy in Intelligent Microgrid

Smart Grid
Vol. 12  No. 05 ( 2022 ), Article ID: 55771 , 13 pages
10.12677/SG.2022.125016

Review of Inverter Topology and Control Strategy in Intelligent Microgrid

Yiwei Feng, Zong Ma

College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou Gansu

Received: Aug. 13th, 2022; accepted: Sep. 3rd, 2022; published: Sep. 14th, 2022

ABSTRACT

With the penetration of distributed energy, such as photovoltaic and battery energy storage systems in the distribution system, how to improve the power quality based on the control strategy of the inverter presents new challenges. In this paper, from the perspective of inverter in intelligent microgrid, the basic principle of inverter in the intelligent microgrid and the classic inverter types are described; Different inverter topologies are analyzed and their different functional characteristics and advantages and disadvantages are summarized; This paper analyzes the problems and solutions that affect the power quality output, and summarizes the different control strategies of the current inverter. Finally, the future research direction of inverter technology has prospected.

Keywords:Distributed Energy, Power Quality, Inverter Topology, Control Strategy

1. 引言

2. 逆变器原理

${I}_{Ii}\angle {\phi }_{Ii}=\frac{{E}_{i}\angle {\delta }_{i}}{j{X}_{L}},\text{}i=a,b,c;\text{}{Y}_{L}=\frac{1}{{X}_{L}}$ (1)

$\left\{\begin{array}{l}{\stackrel{˙}{x}}_{i}={f}_{i}\left({x}_{i}\right)+{k}_{i}\left({x}_{i}\right){D}_{i}+{g}_{i}\left({x}_{i}\right){u}_{i}\\ {y}_{i}={h}_{i}\left({x}_{i}\right)\end{array}$ (2)

Figure 1. Intelligent microgrid block diagram based on inverter

3. 逆变器结构及其拓扑

3.1. 常规逆变器拓扑

Figure 2. Conventional full bridge inverter

Figure 3. Differential boost inverter

Figure 4. Dual source anti parallel step-up and step-down inverter

Figure 5. Z-source inverter

Figure 6. Three port fly-back inverter of coupling circuit

Figure 7. Three stage fly-back inverter with soft switch

3.2. 新型逆变器拓扑

(a) (b) (c)

Figure 8. Traditional multilevel inverter topology. (a) Three level; (b) Traditional five level; (c) Cascade H-bridge five level

(a) (b)

Figure 9. Simplified switched symmetric MLI topology without H-bridge

(a) (b)

Figure 10. Simplified symmetric MLI topology with H-bridge

1) 在不改变拓扑结构的情况下，放置非对称直流电源而不是对称直流电源。

2) 将由两个或三个直流电源组成的对称形式的基本单元进行扩展，然后在不同的不对称条件下将所开发的基本单元串联起来。

3) 以由两个或三个直流电源组成的不对称形式扩展基本单元，然后将开发的基本单元串联。

(a) (b)

Figure 11. Simplified switch number asymmetric MLI topology with H-bridge. (a) Without H-bridge; (b) With H-bridge

(a) (b)

Figure 12. Hybrid MLI topology

4. 逆变器下的控制策略及分析

4.1. 基于电压和频率控制

$\begin{array}{l}{i}_{ldi}^{*}={F}_{i}{i}_{odi}-{w}_{b}{C}_{fi}{v}_{oqi}+{K}_{PVi}\left({v}_{odi}^{*}-{v}_{odi}\right)+{K}_{IVi}{\varphi }_{di}\\ {i}_{lqi}^{*}={F}_{i}{i}_{oqi}-{w}_{b}{C}_{fi}{v}_{odi}+{K}_{PVi}\left({v}_{oqi}^{*}-{v}_{oqi}\right)+{K}_{IVi}{\varphi }_{qi}\\ {v}_{idi}^{*}=-{w}_{b}{L}_{fi}{i}_{lqi}+{K}_{PCi}\left({i}_{ldi}^{*}-{i}_{ldi}\right)+{K}_{ICi}{\gamma }_{di}\\ {v}_{iqi}^{*}=-{w}_{b}{L}_{fi}{i}_{ldi}+{K}_{PCi}\left({i}_{lqi}^{*}-{i}_{lqi}\right)+{K}_{ICi}{\gamma }_{qi}\end{array}$ (3)

(a) (b)

Figure 13. Block diagram of voltage and current controller. (a) Voltage control; (b) Current control

$\left\{\begin{array}{l}\frac{\text{d}}{\text{d}t}{〈{x}_{1\text{_}j}〉}_{h}=0.5\left({〈{u}_{o\text{_}j}^{*}〉}_{h}-{〈{u}_{{v}_{j},j}〉}_{h}-{〈{u}_{o\text{_}j}〉}_{h}\right)-j2hw{〈{x}_{1\text{_}j}〉}_{h}\\ \frac{\text{d}}{\text{d}t}{〈{x}_{2\text{_}j}〉}_{h}=0.5\left({〈{u}_{o\text{_}j}^{*}〉}_{h}-{〈{u}_{{v}_{j},j}〉}_{h}-{〈{u}_{o\text{_}j}〉}_{h}\right)\end{array}$ (4)

Figure 14. Proportional resonant voltage controller

4.2. 基于有功和无功功率控制

$\begin{array}{l}{\stackrel{˙}{P}}_{i}=-{w}_{ci}{P}_{i}+{w}_{ci}\left({v}_{odi}{i}_{odi}+{v}_{oqi}{i}_{oqi}\right)\\ {\stackrel{˙}{Q}}_{i}=-{w}_{ci}{Q}_{i}+{w}_{ci}\left({v}_{oqi}{i}_{odi}-{v}_{odi}{i}_{oqi}\right)\end{array}$ (5)

Figure 15. Block diagram of power controller

$\begin{array}{l}{w}^{*}={w}_{n}-{w}_{p}\left({〈P〉}_{0}-{P}_{n}\right)\\ {E}^{*}={E}_{n}-{m}_{p}{〈Q〉}_{0}\end{array}$ (6)

Figure 16. Power controller under low-pass filtering

4.3. 基于下垂控制

4.4. 其他控制策略

5. 总结与展望

1) 提出新或改进逆变器拓扑结构，能进一步提高控制精度，减小逆变器输出电压的谐波。保证非关键负载能在允许的电压波动范围内正常工作，若有必要可用其它调压措施来调整。

2) 虽然这些控制策略对性能进行了改进，满足逆变器的稳定性问题，提高智能微网的增益。但依旧面临着：如低系统惯性、低电抗电阻比、可再生能源的不确定性和间歇性等严峻的挑战。

3) 考虑到更小的尺寸、更低的惯性、电力电子接口分布式发电的参与以及需求峰值的有限平滑转换。设计逆变器具备远程监控功能和系统运行、报警、可编程逻辑控制器设定点等功能。当出现问题时，可以作出更快、更准确、更智能切断需求以减小运行负载损失。并且提供数字继电器、提供数字通信、自适应保护、超快速(子周期)保护等保护及维护措施，尽量减少电力系统设备的损坏。

4) 具有高能量密度、长循环寿命、低维护要求的逆变器储能技术，在提供电压和频率支持、功率分享、调峰等功能的同时，还保证系统的可靠性、弹性、快速瞬态扰动控制以提高电能质量。

5) 逆变器技术的改进促进越来越多的智能微网项目，使农村环境得以改善；由于智能微网的传输损耗低、大型电网中的网络安全问题以及研究机构等部门对安全可靠的供电选择需求，保证了供电安全。

Review of Inverter Topology and Control Strategy in Intelligent Microgrid[J]. 智能电网, 2022, 12(05): 155-167. https://doi.org/10.12677/SG.2022.125016

1. 1. Dileep, G. (2020) A Survey on Smart Grid Technologies and Applications. Renewable Energy, 146, 2589-2625.
https://doi.org/10.1016/j.renene.2019.08.092

2. 2. Ali Khan, M.Y. (2020) A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies. Energies (Basel), 13, Article No. 4185.
https://doi.org/10.3390/en13164185

3. 3. Chen, X., et al. (2018) Injected Grid Current Quality Improvement for a Voltage-Controlled Grid-Connected Inverter. IEEE Transactions on Power Electronics, 33, 1247-1258.
https://doi.org/10.1109/TPEL.2017.2678525

4. 4. Albatran, S., et al. (2017) Online Optimal Switching Frequency Selection for Grid-Connected Voltage Source Inverters. Electronics (Basel), 6, Article No. 110.
https://doi.org/10.3390/electronics6040110

5. 5. Sangsefidi, Y., Ziaeinejad, S. and Mehrizi-Sani, A. (2017) Low Switching Frequency-Based Predictive Control of a Grid-Connected Voltage-Sourced Converter. IEEE Transactions on Energy Conversion, 32, 686-697.
https://doi.org/10.1109/TEC.2016.2642123

6. 6. Li, Y. (2020) Autonomous Control Strategy for Microgrid Operating Modes Smooth Transition. IEEE Access, 8, 142159-142172.
https://doi.org/10.1109/ACCESS.2020.3014255

7. 7. Hornik, T. and Zhong, Q.C. (2010) H∞ Repetitive Voltage Control of Grid-Connected Inverters with a Frequency Adaptive Mechanism. IET Power Electronics, 3, 925-935.
https://doi.org/10.1049/iet-pel.2009.0345

8. 8. Ortiz, L. (2020) A Review on Control and Fault-Tolerant Control Systems of AC/DC Microgrids. Heliyon, 6, e04799.
https://doi.org/10.1016/j.heliyon.2020.e04799

9. 9. Nithara, P.V. and Eldho, R.P. (2021) Comparative Analysis of Different Control Strategies in Single Phase Standalone Inverter. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, 19-20 March 2021, 1105-1109.
https://doi.org/10.1109/ICACCS51430.2021.9441547

10. 10. 周广磊. 不平衡负载下微网逆变器控制策略的研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2020: 89.

11. 11. Zhou, X.-S., Cui, L.-Q. and Ma, Y.-J. (2011) Research on Control of Micro Grid. 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, 6-7 January 2011, 1129-1132.

12. 12. 顾和荣. 智能微网逆变器电流下垂控制分析与实验研究[J]. 电力系统保护与控制, 2013, 41(18): 45-48.

13. 13. 高明智. 智能微型电网系统孤岛模式中逆变器并联控制技术的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2014: 233.

14. 14. 徐帅, 张建忠. 多电平电压源型逆变器的容错技术综述[J]. 电工技术学报, 2015, 30(21): 39-50.

15. 15. Kim, M. (2019) Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems. Energies (Basel), 12, Article No. 837.
https://doi.org/10.3390/en12050837

16. 16. 滕俊杰, 李素敏. 虚拟同步发电机功率耦合机理及解耦策略研究[J]. 电气传动, 2019, 49(10): 60-69.

17. 17. Gonzales-Zurita, Ó. (2020) Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies (Basel), 13, Article No. 3483.
https://doi.org/10.3390/en13133483

18. 18. 孙亮, 等. 基于改进虚拟同步发电机的多逆变器频率无差控制策略[J]. 电力系统保护与控制, 2021, 49(11): 18-27.

19. 19. 马铱林. 改善虚拟同步发电机阻尼特性的设计方法[J]. 电网技术, 2021, 45(1): 269-275.

20. 20. 王林. 基于虚拟阻抗的逆变器并联系统柔性功率调控策略[J]. 船电技术, 2021, 41(6): 26-34.

21. 21. 姚欢, 等. 级联H桥逆变器驱动永磁同步电机的鲁棒模型预测电流控制策略[J]. 中国电机工程学报, 2021, 42(14): 1-11.

22. 22. 曹以龙, 余小婵. 采用LCL滤波器的无电压传感器三相并网逆变器技术[J]. 上海电力大学学报, 2021, 37(3): 211-216.

23. 23. Du, W., et al. (2021) Modeling of Grid-Forming and Grid-Following Inverters for Dynamic Simulation of Large-Scale Distribution Systems. IEEE Transactions on Power Delivery, 36, 2035-2045.
https://doi.org/10.1109/TPWRD.2020.3018647

24. 24. Bidram, A. (2013) Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization. IEEE Transactions on Power Systems, 28, 3462-3470.
https://doi.org/10.1109/TPWRS.2013.2247071

25. 25. Minambres-Marcos, V. (2014) Generic Losses Model for Traditional Inverters and Neutral Point Clamped Inverters. Elektronika ir Elektrotechnika, 20, 84-88.
https://doi.org/10.5755/j01.eee.20.5.7106

26. 26. Vairavasundaram, I. (2021) A Review on Small Power Rating PV Inverter Topologies and Smart PV Inverters. Electronics (Basel), 10, Article No. 1296.
https://doi.org/10.3390/electronics10111296

27. 27. Malinowski, M., Rodriguez, J. and Pérez, M.A. (2010) A Survey on Cascaded Multilevel Inverters. IEEE Transactions on Electron Devices, 57, 2197-2206.
https://doi.org/10.1109/TIE.2009.2030767

28. 28. Jamaludin, J., Rahim, N.A. and Ping, H.W. (2015) Multilevel Voltage Source Inverter with Optimised Usage of Bidirectional Switches. IET Power Electron, 8, 378-390.
https://doi.org/10.1049/iet-pel.2014.0097

29. 29. Sano, K., Yonezawa, R. and Noda, T. (2019) An Electromagnetic Transient Simulation Model of Grid-Connected Inverters for Dynamic Voltage Analysis of Distribution Systems. Electrical Engineering in Japan, 206, 11-21.
https://doi.org/10.1002/eej.23179

30. 30. 周识远. 弱电网下光伏并网逆变器电能质量控制策略研究[J]. 东北电力技术, 2021, 42(5): 6-9.

31. 31. Peng, Y. (2020) Modeling and Stability Analysis of Inverter-Based Microgrid under Harmonic Conditions. IEEE Transactions on Smart Grid, 11, 1330-1342.
https://doi.org/10.1109/TSG.2019.2936041

32. 32. Panigrahi, B.K. (2021) A Comprehensive Review on Intelligent Islanding Detection Techniques for Renewable Energy Integrated Power System. International Journal of Energy Research, 45, 14085-14116.
https://doi.org/10.1002/er.6641

33. 33. Islam, M., Yang, F. and Amin, M. (2021) Control and Optimisation of Networked Microgrids: A Review. IET Renewable Power Generation, 15, 1133-1148.
https://doi.org/10.1049/rpg2.12111

34. 34. Aminzadeh, S., Tarafdar Hagh, M. and Seyedi, H. (2020) Reactive Power Management for Microgrid Frequency Control. International Journal of Electrical Power & Energy Systems, 120, Article ID: 105959.
https://doi.org/10.1016/j.ijepes.2020.105959

35. 35. Vasquez, J.C. (2009) Adaptive Droop Control Applied to Voltage-Source Inverters Operating in Grid-Connected and Islanded Modes. IEEE Transactions on Industrial Electronics (1982), 56, 4088-4096.
https://doi.org/10.1109/TIE.2009.2027921

36. 36. 龚仁喜, 黎洛琦, 王奇. 一种虚拟同步发电机自适应阻尼补偿方法[J]. 电测与仪表, 2021, 1-7.

37. 37. Wei, Y. (2016) Control Strategy for Parallel-Operated Virtual Synchronous Generators. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 22-26 May 2016, 2015-2021.

38. 38. 曹以龙, 余小婵. 采用LCL滤波器的无电压传感器三相并网逆变器技术[J]. 上海电力大学学报, 2021, 37(3): 211-216.