-)自由基清除率和还原力分别提高了13.40%和14.79%,表明牡丹籽粕的抗氧化性功能肽不会被胃肠消化破坏。本研究为牡丹籽粕多肽应用于食品体系提供理论支持。 In order to explore the possibility of peony seed meal peptides as antioxidant functional food components, this study optimized the prepara-tion process of peony seed meal antioxidant peptides with peony seed meal protein as raw materi-als. Firstly, the hydrolysis degree (DH) and the free radical scavenging rate of 1,1-diphenyl-2-nitrophenylhydrazine (DPPH) were used as indexes, and the effects of hydrolysis temperature, time, enzyme concentration, pH and substrate concentration on the degree of prote-olysis and antioxidant activity of peony seed meal were determined by single factor test. On this ba-sis, L9(34) orthogonal test with four factors and three levels was used to optimize the optimal prep-aration process of antioxidant peptides. The results were as follows: enzymatic hydrolysis time 2 h, pH 9.5, enzymatic hydrolysis temperature 60˚C, substrate concentration 10%, enzyme concentra-tion 1.3%. Then, the peony seed meal polypeptide was simulated for digestion in vitro to explore the effect of digestion on its antioxidant activity. It was found that the scavenging capacity of 2,2'-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS+) was not significantly different, the scavenging rate of superoxide anion ( O2-) radical and reducing power were increased by 13.40 and 14.79%, respectively, indicating that the antioxidant functional peptide of peony seed meal could not be damaged by gastrointestinal digestion. This study provides theoretical support for the application of peony seed meal peptides in food system." /> 牡丹籽粕多肽的酶解制备工艺及其抗氧化性 Study on Preparation Process and Antioxidant Activity of Polypetide Prepared by Enzymes from Peony Seed Meal -)自由基清除率和还原力分别提高了13.40%和14.79%,表明牡丹籽粕的抗氧化性功能肽不会被胃肠消化破坏。本研究为牡丹籽粕多肽应用于食品体系提供理论支持。 In order to explore the possibility of peony seed meal peptides as antioxidant functional food components, this study optimized the prepara-tion process of peony seed meal antioxidant peptides with peony seed meal protein as raw materi-als. Firstly, the hydrolysis degree (DH) and the free radical scavenging rate of 1,1-diphenyl-2-nitrophenylhydrazine (DPPH) were used as indexes, and the effects of hydrolysis temperature, time, enzyme concentration, pH and substrate concentration on the degree of prote-olysis and antioxidant activity of peony seed meal were determined by single factor test. On this ba-sis, L9(34) orthogonal test with four factors and three levels was used to optimize the optimal prep-aration process of antioxidant peptides. The results were as follows: enzymatic hydrolysis time 2 h, pH 9.5, enzymatic hydrolysis temperature 60˚C, substrate concentration 10%, enzyme concentra-tion 1.3%. Then, the peony seed meal polypeptide was simulated for digestion in vitro to explore the effect of digestion on its antioxidant activity. It was found that the scavenging capacity of 2,2'-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS+) was not significantly different, the scavenging rate of superoxide anion ( O2-) radical and reducing power were increased by 13.40 and 14.79%, respectively, indicating that the antioxidant functional peptide of peony seed meal could not be damaged by gastrointestinal digestion. This study provides theoretical support for the application of peony seed meal peptides in food system."/> -)自由基清除率和还原力分别提高了13.40%和14.79%,表明牡丹籽粕的抗氧化性功能肽不会被胃肠消化破坏。本研究为牡丹籽粕多肽应用于食品体系提供理论支持。 In order to explore the possibility of peony seed meal peptides as antioxidant functional food components, this study optimized the prepara-tion process of peony seed meal antioxidant peptides with peony seed meal protein as raw materi-als. Firstly, the hydrolysis degree (DH) and the free radical scavenging rate of 1,1-diphenyl-2-nitrophenylhydrazine (DPPH) were used as indexes, and the effects of hydrolysis temperature, time, enzyme concentration, pH and substrate concentration on the degree of prote-olysis and antioxidant activity of peony seed meal were determined by single factor test. On this ba-sis, L9(34) orthogonal test with four factors and three levels was used to optimize the optimal prep-aration process of antioxidant peptides. The results were as follows: enzymatic hydrolysis time 2 h, pH 9.5, enzymatic hydrolysis temperature 60˚C, substrate concentration 10%, enzyme concentra-tion 1.3%. Then, the peony seed meal polypeptide was simulated for digestion in vitro to explore the effect of digestion on its antioxidant activity. It was found that the scavenging capacity of 2,2'-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS+) was not significantly different, the scavenging rate of superoxide anion ( O2-) radical and reducing power were increased by 13.40 and 14.79%, respectively, indicating that the antioxidant functional peptide of peony seed meal could not be damaged by gastrointestinal digestion. This study provides theoretical support for the application of peony seed meal peptides in food system."/> -)自由基清除率和还原力分别提高了13.40%和14.79%,表明牡丹籽粕的抗氧化性功能肽不会被胃肠消化破坏。本研究为牡丹籽粕多肽应用于食品体系提供理论支持。 In order to explore the possibility of peony seed meal peptides as antioxidant functional food components, this study optimized the prepara-tion process of peony seed meal antioxidant peptides with peony seed meal protein as raw materi-als. Firstly, the hydrolysis degree (DH) and the free radical scavenging rate of 1,1-diphenyl-2-nitrophenylhydrazine (DPPH) were used as indexes, and the effects of hydrolysis temperature, time, enzyme concentration, pH and substrate concentration on the degree of prote-olysis and antioxidant activity of peony seed meal were determined by single factor test. On this ba-sis, L9(34) orthogonal test with four factors and three levels was used to optimize the optimal prep-aration process of antioxidant peptides. The results were as follows: enzymatic hydrolysis time 2 h, pH 9.5, enzymatic hydrolysis temperature 60˚C, substrate concentration 10%, enzyme concentra-tion 1.3%. Then, the peony seed meal polypeptide was simulated for digestion in vitro to explore the effect of digestion on its antioxidant activity. It was found that the scavenging capacity of 2,2'-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS+) was not significantly different, the scavenging rate of superoxide anion ( O2-) radical and reducing power were increased by 13.40 and 14.79%, respectively, indicating that the antioxidant functional peptide of peony seed meal could not be damaged by gastrointestinal digestion. This study provides theoretical support for the application of peony seed meal peptides in food system."/>

Hans Journal of Food and Nutrition Science
Vol. 11  No. 04 ( 2022 ), Article ID: 57579 , 14 pages
10.12677/HJFNS.2022.114030

牡丹籽粕多肽的酶解制备工艺及其抗氧化性

刘淑芸1,申传龙1,孙汉巨1*,何述栋1,孙后田2,杨友煌2,金日生1

1合肥工业大学食品与生物工程学院,安徽 合肥

2铜陵亚通牡丹产业发展有限公司,安徽 铜陵

收稿日期:2022年8月15日;录用日期:2022年11月1日;发布日期:2022年11月8日

摘要

为探究牡丹籽粕多肽作为抗氧化功能性食品成分的可能性,本研究以牡丹籽粕蛋白为原料,对牡丹籽粕抗氧化肽的制备工艺进行优化。首先,以水解度(DH)和1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率为指标,通过单因素试验,确定了酶解温度、时间、酶浓度、pH、底物浓度对牡丹籽粕蛋白酶解程度和抗氧化性的影响。在此基础上,采用四因素三水平L9(34)正交试验,优化抗氧化肽的最佳制备工艺,其结果为:酶解时间2 h,pH为9.5,酶解温度60℃,底物浓度10%,酶浓度1.30%。随后,将牡丹籽粕多肽进行体外模拟消化,探究消化对其抗氧化性的影响。研究发现除2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵(ABTS+)清除能力没有明显差别外,超氧阴离子( O 2 )自由基清除率和还原力分别提高了13.40%和14.79%,表明牡丹籽粕的抗氧化性功能肽不会被胃肠消化破坏。本研究为牡丹籽粕多肽应用于食品体系提供理论支持。

关键词

牡丹籽粕,多肽,抗氧化性,酶解

Study on Preparation Process and Antioxidant Activity of Polypetide Prepared by Enzymes from Peony Seed Meal

Shuyun Liu1, Chuanlong Shen1, Hanju Sun1*, Shudong He1, Houtian Sun2, Youhuang Yang2, Risheng Jin1

1School of Food and Biological Engineering, Hefei University of Technology, Hefei Anhui

2Tongling Yatong Peony Industry Development Co. Ltd., Tongling Anhui

Received: Aug. 15th, 2022; accepted: Nov. 1st, 2022; published: Nov. 8th, 2022

ABSTRACT

In order to explore the possibility of peony seed meal peptides as antioxidant functional food components, this study optimized the preparation process of peony seed meal antioxidant peptides with peony seed meal protein as raw materials. Firstly, the hydrolysis degree (DH) and the free radical scavenging rate of 1,1-diphenyl-2-nitrophenylhydrazine (DPPH) were used as indexes, and the effects of hydrolysis temperature, time, enzyme concentration, pH and substrate concentration on the degree of proteolysis and antioxidant activity of peony seed meal were determined by single factor test. On this basis, L9(34) orthogonal test with four factors and three levels was used to optimize the optimal preparation process of antioxidant peptides. The results were as follows: enzymatic hydrolysis time 2 h, pH 9.5, enzymatic hydrolysis temperature 60˚C, substrate concentration 10%, enzyme concentration 1.3%. Then, the peony seed meal polypeptide was simulated for digestion in vitro to explore the effect of digestion on its antioxidant activity. It was found that the scavenging capacity of 2,2'-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS+) was not significantly different, the scavenging rate of superoxide anion ( O 2 ) radical and reducing power were increased by 13.40 and 14.79%, respectively, indicating that the antioxidant functional peptide of peony seed meal could not be damaged by gastrointestinal digestion. This study provides theoretical support for the application of peony seed meal peptides in food system.

Keywords:Peony Seed Meal, Polypeptide, Oxidation Resistance, Enzymatic Hydrolysis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在人体生长过程中,自由基的过量积累会引发癌症、糖尿病、心脑血管等一系列慢性疾病 [1] [2]。因此,清除自由基对维持人体健康至关重要。随着经济的发展和科技的进步,人们开始对人工合成的抗氧化剂提出质疑 [3]。同时,天然抗氧化剂的研究引起了人们的极大兴趣 [4]。生物活性肽能够以多种方式发挥其抗炎,抗氧化等特性,包括清除自由基、抑制活性氧的产生以及抑制促炎细胞大子的释放等 [5] [6] [7]。自然界中存在的胶原蛋白及其衍生肽具有强氧化性、强生物相容性和对人体无刺激等特点 [8] [9] [10]。已报道多种来源的多肽具有抗氧化功能,如罗非鱼皮多肽 [11]、海洋鱼低聚肽 [12]、大豆多肽 [13] 等。

牡丹属毛茛科、芍药属,是多年生落叶灌木,原产于我国西北地区,目前已被广泛种植。牡丹分为观赏型牡丹和油用型牡丹,近年来,由于国家卫生部批准牡丹籽油成为新资源食品,因此,油用型牡丹种的植面积不断扩大,在提取油脂的过程中,牡丹籽粕的产量约为25%~30%,研究表明,我国每年约产生5 × 104吨牡丹籽壳和饼粕,其中只有少部分被用于饲料,大部分被直接丢弃 [14]。牡丹籽粕蛋白含量丰富,约占种子重量的28%,具有良好的起泡性、持水性、乳化性和乳化稳定性,具有广阔的开发利用前景。牡丹籽多肽是酶解牡丹籽粕的产物,具有抗氧化、抗菌、降血压及免疫调节等生物活性 [15] [16]。

目前,对于这样一种成分安全,营养价值高,功能性较好的物质相关研究却并不充分,牡丹籽粕水解后产生多肽抗氧化性相关研究较少,因此,本文通过测定DPPH清除率和DH对牡丹籽粕酶解工艺进行探究。随后将牡丹籽粕多肽进行体外模拟消化,测定不同浓度多肽液的抗氧化性,以评估模拟消化对样品抗氧化能力的影响。本研究开发了利用牡丹籽粕资源的新方法,减少了营养资源的浪费。

2. 材料与方法

2.1. 材料与试剂

牡丹籽粕购自山东省荷泽市尧舜牡丹生物技术有限公司;碱性蛋白酶(50 U/mg,食品级,诺维信生物技术有限公司);中性蛋白酶(50 U/mg,食品级,诺维信生物技术有限公司);木瓜蛋白酶(100 U/mg,食品级,诺维信生物技术有限公司);风味蛋白酶(200 U/mg,食品级,诺维信生物技术有限公司);胃蛋白酶、胰液(食品级,美国Sigma公司);氢氧化钠、盐酸、1,1-二苯基-2-苦基肼、过硫酸钾、无水乙醇、氨基丁三醇、邻苯三酚、磷酸、铁氰化钾、碳酸氢钠、三氯乙酸及三氯化铁(分析纯,国药集团化学试剂有限公司)。

2.2. 主要仪器设备

电热恒温水浴锅(HH-2,金坛区华城润华实验仪器厂);台式酸度计(PHS-25,浙江赛德仪器设备有限公司);电子天平(BSA3202S-CW,梅特勒托利多常州公司);紫外分光光度计(UV-1700,日本岛津公司);超低温冰箱(907,美国赛默飞世尔公司);真空冷冻干燥机(Lab-1A-50E,北京博医康司);高速小型离心机(TG16G,湖南凯达科学仪器有限公司);台式冷冻离心机(KH20R,湖南凯达科学仪器有限公司)。

2.3. 试验方法

2.3.1. 牡丹籽粕蛋白提取

提取牡丹籽粕蛋白,参照阎震等人 [17] 方法并进行简单修改。具体方法为:按照料液比1:10 (m/v)将100 g牡丹籽粕与超纯水混合,搅拌混匀,使用0.05 M NaOH调节溶液pH至9.5,使用100 W超声振荡3.5 h,超声振荡结束后冷却至室温,随后8000 r/min离心10 min,收集上清液,使用0.05 M HCl调节上清液pH至3.6,8000 r/min离心10 min,收集沉淀,将沉淀冷冻干燥,−20℃冰箱储存待用。

2.3.2. 酶解蛋白酶的筛选

表1所示,使用风味蛋白酶、木瓜蛋白酶、中性蛋白酶和碱性蛋白酶在各自最适酶解条件下对牡丹籽粕进行酶解试验,其中底物质量分数为0.5%,加酶量1%,以DH和DPPH自由基清除率为指标,找出适合酶解牡丹籽粕蛋白的蛋白酶。

Table 1. Optimum enzymatic hydrolysis conditions for different proteases

表1. 不同蛋白酶的最适酶解条件

2.3.3. 单因素试验

1) 酶解时间对牡丹籽粕蛋白水解度和抗氧化性的影响

固定料液比1:10 (m/v),调节pH至8.0,加入0.5%的碱性蛋白酶,在45℃分别酶解1、1.5、2、2.5、3和3.5 h。以DH和DPPH自由基清除率为指标,确定最佳酶解时间。

2) 酶解pH对牡丹籽粕蛋白水解度和抗氧化性的试验

固定料液比1:10 (m/v),分别调节pH至7.0、8.0、9.0、10.0、11.0和12.0,加入0.5%的碱性蛋白酶,在45℃酶解2.5 h。以DH和DPPH自由基清除率为指标,确定最佳酶解pH。

3) 酶解温度对牡丹籽粕蛋白水解度和抗氧化性的试验

固定料液比1:10 (m/v),调节pH至8.0,加入0.5%的碱性蛋白酶,分别在45℃、50℃、55℃、60℃、65℃和70℃酶解2.5 h。以DH和DPPH自由基清除率为指标,确定最佳酶解温度。

4) 酶解底物浓度对牡丹籽粕蛋白水解度和抗氧化性的试验

分别在料液比1:10、1:15、1:20、1:25、1:30 和1:35 (m/v)下,调节pH至8.0,加入0.5%的碱性蛋白酶,在45℃酶解2.5 h。以DH和DPPH自由基清除率为指标,确定最佳酶解底物浓度。

5) 酶浓度对牡丹籽粕蛋白水解度和抗氧化性的试验

固定料液比1:10 (m/v),调节pH至8.0,分别加入0.5%、1.0%、1.5%、2.0%、2.5%及3.0%的碱性蛋白酶,分别在45℃酶解2.5 h。以DH和DPPH自由基清除率为指标,确定最佳酶浓度。

2.3.4. 水解度测定

因为牡丹籽粕蛋白在酶解过程中会伴随着H+的吸收与释放,所以采用pH-State法测定牡丹籽粕多肽的水解度 [18],如公式(1)所示进行计算。

DH ( % ) = BN b α hMp × 100 (1)

α = 10 pH pKa 1 + 10 pH pKa

pKa = 7.8 + 298 T 298 × T

式中:Nb——NaOH溶液的浓度(M);

B——NAOH溶液消耗的体积(mL);

Mp——底物中总蛋白质含量(g);

h——每g底物中肽键的毫摩尔数(7.84 mMol/g)。

2.3.5. DPPH自由基清除率指标的测定

配制浓度为0.2%的牡丹籽粕多肽溶液,再称取0.04 g的DPPH,加入无水乙醇,用100 mL的容量瓶定容,获得0.1 mMol/L的DPPH溶液,取2 mL上述样品溶液与等体积的0.1 mMol/LDPPH溶液充分混匀,室温反应30 min,待反应结束然后向比色管中加入反应液,在517 nm处测定溶液的吸光值并记为Ai;将2 mL样品液与等体积的去离子水混合均匀作为空白组,其吸光值记为Aj;将2 mL DPPH溶液与等体积的去离子水混合均匀作为对照组,以4 mL无水乙醇调零,测定吸光值为A0。如公式(2)所示进行计算。

DPPH ( % ) = ( 1 A i A j A 0 ) × 100 % (2)

2.3.6 正交试验

选择酶解pH值,酶解温度,底物浓度和酶浓度作为正交试验的因素,根据单因素试验获得的最优条件分別安排3个水平,试验指标为DPPH∙自由基清除率,以确定酶解牡丹籽粕蛋白制备抗氧化活性肽的最优制备条件。表2所示为正交试验因素水平表。

Table 2. Levels of experimental factors for preparation of antioxidant active peptides by enzymatic hydrolysis of peony seed meal protein

表2. 酶解牡丹籽粕蛋白制备抗氧化活性肽试验因素水平表

2.3.7. 体外模拟胃肠道消化

对于体外胃蛋白酶–胰蛋白酶模拟胃肠消化,溶解牡丹籽粕多肽(3% W/V)并使用1 M HCL将pH值保持在2.0。加入胃蛋白酶(4% m/v),37℃孵育2小时。将0.9 mM NaHCO3溶液的pH值调节至5.3,并将1.0 M NaOH溶液的pH值调节至7.5。加入胰蛋白酶(4% m/v),混合,37℃反应2 h,终止反应。煮沸10 min后,将混合物以9000 r/min离心15分钟。将上清液冻干并在−20℃冷藏,即得消化后的牡丹籽粕多肽。

2.3.8. 体外抗氧化活性测定

按照正交试验获得的最优条件制备的多肽进行以下体外抗氧化试验 [19]。

1) 超氧阴离子(O2−)自由基清除率测定试验

称取一定量的牡丹籽粕酶解多肽,以0.5%为最低的底物浓度,每组㡳物浓度依次以0.5%浓度梯度递增,配制成8组等浓度梯度的酶解多肽溶液;分别准确量取4 mL等浓度梯度的酶解多肽溶液,加入5 mL浓度为0.05 mol/L Tris-HCl缓冲溶液,25℃恒温水浴20 min,随后分别加入1 mL已在25℃的恒温水浴锅中预热20 min的浓度为3 mmol/L的邻苯三酚溶液,混合均匀后在25℃下精确反应5 min,反应结束后立即加入1 mL浓度为10 mol/L的HCl溶液终止反应,于320 nm处测定吸光度,空白组以同体积的蒸馏水代替样品,每个试样重复测定三次。的具体计算公式如下:

O 2 ( % ) = A 0 A 1 A 0 × 100 % (3)

式中:

A1——样品组在5 min时的吸光值与样品在0 min时的吸光值之差;

A0——空白组在5 min时的吸光值与空白组在0 min时的吸光值之差。

2) ABTS+自由基清除率的测定试验

参考Xican Li等人 [20] 的研究方法,取7.4 mmol/L 0.2 mL的ABTS+溶液与2.6 mmol/L 0.2 mL的K2S2O8溶液混合,在室温且四周无光黑暗的条件下反应12 h,之后用pH 9.4的磷酸盐缓冲液或无水乙醇缓稀释,使其在734 nm处的吸光值为0.7 ± 0.02,该溶液就是ABTS+工作液,4℃储存备用。

称取足量的牡丹籽粕酶解多肽,配制成以0.025%为最低浓度,浓度梯度为0.025%递增的8组等浓度梯度的溶液,分别准确吸取0.8 mL样品溶液置于管中,加入3.2 mL ABTS+工作液,震荡混匀后在室温下避光反应6 min,反应结束后在734 nm处测定反应液的吸光值记为As。以无水乙醇代替样品作为空白组测其吸光值记为Aa,以无水乙醇为参比调零。ABTS+自由基清除率的具体计算公式如下:

ABTS + ( % ) = ( 1 A s A a ) × 100 % (4)

式中:

Aa——无水乙醇 + ABTS+的吸光值;

As——样品液 + ABTS⁺的吸光值。

3) 还原力的测定

参考高蕾蕾 [21] 的研究方法称取足量的牡丹籽粕酶解多肽,配制成以0.05%为最低浓度,浓度梯度以0.5%递增的8组等浓度梯度的溶液。分别准确吸取1 mL上述样品溶液加入2.5 mL,pH值6.6,0.2 mol/L的磷酸缓冲液和2.5 mL,1%浓度的K3[Fe(CN)6]溶液,混匀后在50℃下反应20 min,冷却至室温后,加入2.5 mL,10%浓度的TCA溶液以终止反应。将上述所得溶液3000 r/min离心10 min,取2.5 mL上清液,加入2.5 mL超纯水和0.5 mL,1 mg/mL FeCl3,混匀后,室温反应10 min,在700 nm处测定其吸光值。溶液的吸光值越大表明牡丹籽粕酶解多肽的还原力越强。

2.3.9. 数据分析

所有试验重复三次。采用ORIGIN 2021软件处理数据,结果以平均值 ± 标准差表示。

3. 试验结果与分析

3.1. 牡丹籽粕蛋白酶解蛋白酶筛选

不同蛋白酶在各自的最佳反应条件下,对牡丹籽粕蛋白的水解度值和DPPH自由基清除率值如图1所示。根据下图的试验结果可知经过碱性蛋白酶、中性蛋白酶、木瓜蛋白酶和复合蛋白酶这四种酶酶解后得到的牡丹籽粕多肽对DPPH自由基清除率的值分别为40%、41%、32%和26.2%;而碱性蛋白酶、中性蛋白酶、木瓜蛋白酶和复合蛋白酶对牡丹籽粕蛋白水解度(DH)的值分别为24.3%、8.45%、6.5%和8.78%。这一系列数据表明,用碱性蛋白酶和中性蛋白酶酶解后的多肽对DPPH自由基的清除能相差不大,此外碱性蛋白酶对牡丹籽粕蛋白水解度(DH)的影响最大,且远大于其它三种蛋白酶。可能是由于不同蛋白酶的作用位点不同,所以不同蛋白酶酶解后的产物多肽分子量和空间结构也不同,碱性蛋白酶酶解后所得的牡丹籽粕多肽DPPH自由基清除能力和水解度(DH)明显较高 [22]。因此,本次试验选用碱性蛋白酶作为牡丹籽粕多肽的水解酶,并通过单因素与正交试验优化牡丹籽粕抗氧化活性肽酶解工艺。

3.2. 单因素试验结果

3.2.1. 酶解时间对牡丹籽粕多肽DH及DPPH的影响

酶解时间对牡丹籽粕多肽的DPPH自由基清除率和DH的影响如图2所示。随着酶解时间从1 h增长到2 h,DPPH自由基清除率也随着从32.89%增长到50.78%,2 h以后随着时间的推移,DPPH自由基清除率缓慢下降,这可能是因为部分具有DPPH自由基清除活性的肽段被酶解 [22]。同样的,随着酶解时间从1 h增长到2.5 h,牡丹籽粕多肽的DH从4.4%增长到6.4%,2.5 h以后牡丹籽粕多肽的DH趋于平稳。这可能是由于酶解时间达到2.5 h,酶和底物已经充分的反应,完全水解 [23]。综上所述,在保证酶解产物具备较高的抗氧化活性的同时节省成本,选择酶解时间2 h作为酶解牡丹籽粕多肽的最适时间。

Figure 1. Effects of protease types on DH and DPPH of polypeptide solution of peony seed meal

图1. 蛋白酶种类对多肽的DH及DPPH的影响

Figure 2. Effects of enzymatic hydrolysis time on DH and DPPH of polypeptide solution of peony seed meal

图2. 酶解时间对多肽的DH及DPPH的影响

3.2.2. pH对牡丹籽粕多肽DH及DPPH的影响

pH对牡丹籽粕多肽的DPPH自由基清除率和DH的影响如图3所示。显然,随着pH从7增长到9,DPPH自由基清除率从32.57%增长到56.57%,当pH值继续增长达到12,DPPH自由基清除率从56.57%降低到30.17%。同样的,随着pH值从7增长到11,牡丹籽粕多肽的水解度从4.1%增长到8.78%,pH值大于11后牡丹籽粕多肽的水解度趋于稳定。DPPH自由基清除率和DH的变化趋势都表明,pH值过高或过低都会对牡丹籽粕多肽的酶解过程造成影响。一方面这可能是因为过高或过低的pH值破坏了碱性蛋白酶的正常空间结构,也有可能影响碱性蛋白酶的活性位点 [24]。另一方面过高的pH值会使牡丹籽粕多肽变性 [25]。所以,为了保证酶解产物具备较高的抗氧化活性,选择pH = 9作为酶解牡丹籽粕多肽的最适pH值。

Figure 3. Effects of enzymatic pH on DH and DPPH of polypeptide solution of peony seed meal

图3. pH值对多肽的DH及DPPH的影响

3.2.3. 酶解温度对牡丹籽粕多肽DH及DPPH的影响

酶解温度对牡丹籽粕多肽的DPPH自由基清除率和DH的影响如图4所示。由图可得,随着酶解温度从45℃增长到55℃,DPPH自由基清除率先从49.24%增长到62.72%,当酶解温度继续增长达到70℃,DPPH自由基清除率从62.72%降低到49.97%,这可能是因为温度过高使碱性蛋白酶变性失活了。同样的,酶解温度在45℃~55℃,牡丹籽粕多肽的水解度先从5.7%增长到6.47%,然后又降低到5.81%。酶解温度达到65℃时,水解度达到最大,为9.07,并在65℃后趋于平稳。较高水解度的多肽水解产物其自身的电子供体可能会与自由基反应终止自由基链反应,这可能是导致在45℃~55℃这一区间内,DPPH自由基清除率与水解度的变化趋势有差异的原因 [25]。因此,选择55℃作为酶解牡丹籽粕多肽的最适温度。

3.2.4. 底物浓度对牡丹籽粕多肽DH及DPPH的影响

㡳物浓度对牡丹籽粕多肽的DPPH自由基清除率和DH的影响如图5所示。随着底物浓度从0.5%增长到1%,DPPH自由基清除率也随着从51.53%增长到64.14%,当底物浓度继续增长到1.5%,DPPH自由基清除率从64.14%缓慢下降到59.34%。这表明当底物浓度为1%时,牡丹籽粕多肽的DPPH自由基清除率最大为64.14%,具有较高的抗氧化活性。与此同时,随着底物浓度从0.5%增长到0.75%,牡丹籽粕多肽的DH从5.79%增长到6.89%,当底物浓度继续增长到1.5%,牡丹籽粕多肽的水解度从6.89%降低到4.8%。这表明,当底物浓度为0.75%时,牡丹籽粕多肽的水解度最大为6.89%。当底物浓度增长到超过1%后,DPPH自由基清除率和水解度均呈下降趋势。这可能是由于底物浓度过高,导致底物不能充分被酶解 [26]。综上所述,为了保证酶解产物抗氧活性高的同时水解度也较高,选择底物浓度1%作为酶解牡丹籽粕多肽的最适底物浓度。

Figure 4. Effects of enzymatic hydrolysis temperature on DH and DPPH of polypeptide solution of peony seed meal

图4. 酶解温度对多肽的DH及DPPH的影响

Figure 5. Effects of enzymatic hydrolysis concentration of substrate on DH and DPPH of polypeptide solution of peony seed meal

图5. 底物浓度对多肽的DH及DPPH的影响

3.2.5. 酶浓度对牡丹籽粕多肽DH及DPPH的影响

酶浓度对牡丹籽粕多肽的DPPH自由基清除率和DH的影响如图6所示。随着酶浓度从0.5%增长到1.5%,DPPH自由基清除率也随着从49.74%增长到86.53%。当底物浓度继续增长到3%,DPPH自由基清除率从86.53%降低到34.02%。这表明,当酶浓度为1.5%时,牡丹籽粕多肽的抗氧化活性最高。这可能是因为部分具有DPPH自由基清除活性的肽段被过量的碱性蛋白酶水解了,失去了活性。与此同时,随着酶浓度从0.5%增长到2.0%,牡丹籽粕多肽的水解度从5.68%增长到6.71%,之后水解度趋于平缓。这可能是因为酶的量过多,已经将底物水解完全,所以牡丹籽粕多肽的水解度没有明显变化。因此,选择1.5%作为酶解牡丹籽粕多肽的最适酶浓度。

Figure 6. Effects of enzymatic hydrolysis concentration of enzyme on DH and DPPH of polypeptide solution of peony seed meal

图6. 酶浓度对多肽的DH及DPPH的影响

3.3. 牡丹籽粕蛋白酶解工艺正交试验结果

表3可知,各因素对酶解牡丹籽粕蛋白制备抗氧化活性肽试验的影响从大到小的顺序为酶浓度、底物浓度、温度和pH。通过极差分析,确定了四因素的最优组合为D1C2A3B3。所以最优的试验条件为:酶解温度60℃,溶液pH值9.5,底物浓度1.0%,酶浓度1.3%时,酶解牡丹籽粕蛋白制备的抗氧化活性肽对DPPH自由基清除率高,抗氧化活性强。并在此条件下,进行3次平行验证试验,验证值与预测值的误差在允许误差5%内,说明该模型合理可靠。

Table 3. Orthogonal test results of preparation of antioxidant peptides from peony seed meal

表3. 牡丹籽粕制备抗氧化多肽正交试验结果

3.4. 模拟消化前后牡丹籽粕多肽的抗氧化性

牡丹籽粕多肽对 O 2 自由基的清除效果如图7所示。显而易见,随着牡丹籽粕抗氧化活性肽的浓度从0.5%增长到3.5%,牡丹籽粕多肽对 O 2 自由基的清除率从46.94%增长到87.76%,当牡丹籽粕抗氧化活性肽的浓度继续增长到4.0%,牡丹籽粕多肽对 O 2 自由基的清除率基本不变。经过体外模拟胃肠道消化后,牡丹籽粕多肽的 O 2 自由基的清除率显著提升,虽然趋势与消化前类似,但在浓度为3.5%时为96.52%,比消化前增加了13.40%。

Figure 7. Effect of antioxidant polypeptide on O 2 clearance

图7. 抗氧化多肽浓度对 O 2 的清除率的影响

牡丹籽粕多肽对ABTS+自由基的清除效果由图8所示。随着牡丹籽粕抗氧化活性肽的浓度从0.025%增长到0.1%,牡丹籽粕多肽对ABTS+自由基的清除率从46.94%增长到97.23%,当牡丹籽粕抗氧化活性肽的浓度继续增长到0.2%,牡丹籽粕多肽对ABTS+自由基的清除率基本不变。经过体外模拟胃肠道消化后,牡丹籽粕多肽的ABTS+自由基的清除率没有明显变化。

Figure 8. Effect of antioxidant polypeptide on ABTS+ clearance

图8. 抗氧化多肽浓度对ABTS+的清除率的影响

牡丹籽粕多肽还原力的测定结果如图9所示,随着牡丹籽粕抗氧化活性肽的浓度从0.5%增长到4.0%,牡丹籽粕多肽与铁氰化钾反应后的溶液的吸光值从0.25增长到0.78。当牡丹籽粕多肽浓度为3.5%时,其还原力为0.76,浓度再增加到4.0%时,还原力虽有上升但并不明显。经过体外模拟胃肠道消化后,牡丹籽粕多肽的还原力显著提升,虽然趋势与消化前类似,但在浓度为3.5%时为0.88,比消化前增加了14.79%。

Figure 9. Effect of antioxidant polypeptide on reducing power

图9. 抗氧化多肽浓度对还原力的影响

试验结果显示,牡丹籽粕多肽具有较强的抗氧化性,在浓度为3.5%的时候, O 2 自由基的清除率和还原力分别为87.76%和0.76。当浓度为0.1%时,ABTS+自由基的清除率为97.23%。与陈荣用碱性蛋白酶酶解获得的牡丹籽粕多肽相比,ABTS+自由基的清除率提升了42.77%。同时,以上测定结果表明,牡丹籽粕的抗氧化性可以通过胃肠消化显著提升,除ABTS+清除能力没有明显差别外, O 2 自由基清除率和还原力均有提高。这可能是由于经过体外胃肠道消化后牡丹籽粕多肽分子量降低,小分子量的多肽分子更易在N末端暴露更多具备抗氧化活性的疏水性氨基酸和支链氨基酸 [27]。其次,也可能是因为经过胃蛋白酶和胰蛋白酶消化后,多肽链上的部分氨基酸变为游离氨基酸,从而提高了抗氧化能力 [28]。这与发酵扁豆和发酵大豆胃肠道消化后的结果类似 [16] [29]。

4. 结论

本文以牡丹籽粕为原料,使用碱性蛋白酶作为水解蛋白酶,对牡丹籽粕蛋白进行酶解制备抗氧化多肽。以DH和DPPH清除率为指标,在单因素试验和四因素三水平L9(34)正交试验的基础上,得到制备牡丹籽粕抗氧化肽的最佳反应条件为:酶浓度1.30%,溶液pH值9.5,酶解时间2 h,底物浓度1%以及温度60℃。该牡丹籽粕抗氧化肽经体外模拟胃肠消化后,发现除ABTS+清除能力没有明显差别外, O 2 自由基清除率和还原力分别提高了13.40%和14.79%。牡丹籽粕的抗氧化性的提升可能是由于分子量降低及游离氨基酸含量升高。本研究为牡丹籽粕的开发利用提供了理论基础。

基金项目

铜陵市重点研究与开发计划项目(20190202023)。

文章引用

刘淑芸,申传龙,孙汉巨,何述栋,孙后田,杨友煌,金日生. 牡丹籽粕多肽的酶解制备工艺及其抗氧化性
Study on Preparation Process and Antioxidant Activity of Polypetide Prepared by Enzymes from Peony Seed Meal[J]. 食品与营养科学, 2022, 11(04): 255-268. https://doi.org/10.12677/HJFNS.2022.114030

参考文献

  1. 1. Cao, S.Y., Li, B.Y., Gan, R.Y., et al. (2020) The in Vivo Antioxidant and Hepatoprotective Actions of Selected Chinese Teas. Foods, 9, Article No. 262. https://doi.org/10.3390/foods9030262

  2. 2. Zhao, X.Y., Zhang, F., Pan, W., et al. (2021) Clinical Potentials of Ginseng Polysaccharide for Treating Gestational Diabetes Mellitus. World Journal of Clini-cal Cases, 9, 4959-4968. https://doi.org/10.12998/wjcc.v9.i19.4959

  3. 3. Mahnashi, M.H,, Alyami, B.A., Alqahtani, Y.S., et al. (2021) Neuroprotective Potentials of Selected Natural Edible Oils Using Enzyme Inhibitory, Ki-netic and Simulation Approaches. BMC Complementary Medicine and Therapies, 21, Article No. 248. https://doi.org/10.1186/s12906-021-03420-0

  4. 4. Zhu, M., Pan, J., Hu, X., et al. (2021) Epicatechin Gallate as Xanthine Oxidase Inhibitor: Inhibitory Kinetics, Binding Characteristics, Synergistic Inhibition, and Action Mechanism. Foods, 10, Article No. 2191. https://doi.org/10.3390/foods10092191

  5. 5. Demir, T. and Ağaoğlu, S. (2021) Antioxidant, Antimicrobial and Metmyoglobin Reducing Activity of Artichoke (Cynara scolymus) Powder Extract-Added Minced Meat during Frozen Storage. Molecules, 26, 154-162. https://doi.org/10.3390/molecules26185494

  6. 6. Fratianni, F., d’Acierno, A., Cozzolino, A., et al. (2020) Bio-chemical Characterization of Traditional Varieties of Sweet Pepper (Capsicum annuum L.) of the Campania Region, Southern Italy. Antioxidants, 9, Article No. 556. https://doi.org/10.3390/antiox9060556

  7. 7. Li, X., Guo, M., Chi, J., et al. (2020) Bioactive Peptides from Walnut Residue Protein. Molecules, 25, Article No. 1285. https://doi.org/10.3390/molecules25061285

  8. 8. Altomare, A.A., Baron, G., Aldini, G., et al. (2020) Silkworm Pupae as Source of High-Value Edible Proteins and of Bioactive Peptides. Food Science & Nutrition, 8, 2652-2661. https://doi.org/10.1002/fsn3.1546

  9. 9. Khan, I.T., Nadeem, M., Imran, M., et al. (2020) Impact of Post Fermenta-tion Cooling Patterns on Fatty Acid Profile, Lipid Oxidation and Antioxidant Features of Cow and Buffalo Milk Set Yo-ghurt. Lipids in Health and Disease, 19, Article No. 74. https://doi.org/10.1186/s12944-020-01263-1

  10. 10. Tian, X., Zheng, J., Xu, B., et al. (2020) Optimization of Extraction of Bioactive Peptides from Monkfish (Lophius litulon) and Characterization of Their Role in H2O2-Induced Lesion. Marine Drugs, 18, Article No. 468. https://doi.org/10.3390/md18090468

  11. 11. Pan, M., Liu, K., Yang, J., et al. (2020) Advances on Food-Derived Peptidic Antioxidants—A Review. Antioxidants, 9, Article No. 799. https://doi.org/10.3390/antiox9090799

  12. 12. Dong, Y., Sun, L., Ma, C., et al. (2021) Characterization of a Synergis-tic Antioxidant Synthetic Peptide from Sea Cucumber and Pine Nut. Journal of Food Science and Technology, 59, 2306-2317. https://doi.org/10.1007/s13197-021-05245-8

  13. 13. Jin, L., Zheng, D., Yang, G., et al. (2020) Tilapia Skin Peptides Ameliorate Diabetic Nephropathy in STZ-Induced Diabetic Rats and HG-Induced GMCs by Improving Mitochondrial Dysfunction. Marine Drugs, 18, Article No. 363. https://doi.org/10.3390/md18070363

  14. 14. Pavlicevic, M., Maestri, E. and Marmiroli, M. (2020) Marine Bioactive Peptides—An Overview of Generation, Structure and Application with a Focus on Food Sources. Marine Drugs, 18, Article No. 424. https://doi.org/10.3390/md18080424

  15. 15. Chelliah, R., Wei, S., Daliri, E.B.M., et al. (2021) The Role of Bioactive Peptides in Diabetes and Obesity. Foods, 10, 251-254. https://doi.org/10.3390/foods10092220

  16. 16. 陈容, 胡素素, 郑淳坚, 等. 牡丹籽蛋白提取工艺及其多肽应用研究进展[J]. 现代食品, 2021, 29(19): 23-27.

  17. 17. Qiao, H., Bi, X., Zhang, Y., et al. (2020) Enzymic Polypeptide Antioxidant Activity and Inhibitory Activity on α-Glucosidase and α-Amylase from Paeonia ostii Cake. Industrial Crops and Products, 146, Article ID: 112158. https://doi.org/10.1016/j.indcrop.2020.112158

  18. 18. 王敏, 李聪, 舒羽, 等. 油用牡丹籽粕蛋白及其酶解产物的功能性质研究[J]. 中国油脂, 2020, 45(5): 67-71.

  19. 19. 阎震, 郭溆, 张金宝, 等. 酶解牡丹籽粕蛋白制备抗氧化肽的工艺优化[J]. 食品工业科技, 2018, 39(7): 168-174.

  20. 20. 余敏. 酶解豆粕制备美拉德风味增强肽的研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2018.

  21. 21. 郑颖. 蛋清蛋白抗氧化肽的酶法制备、微胶囊化及生物活性评价[D]: [硕士学位论文]. 南昌: 南昌大学, 2017.

  22. 22. Li, X., Hu, Q., Jiang, S., et al. (2015) Flos Chrysanthemi Indici Protects against Hydroxyl-Induced Damages to DNA and MSCs via Antioxidant Mechanism. Journal of Saudi Chemical Society, 19, 454-460. https://doi.org/10.1016/j.jscs.2014.06.004

  23. 23. 高蕾蕾. 牡丹籽蛋白的理化和功能特性及多肽的抗氧化活性研究[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2018.

  24. 24. Liu, D., Chen, M., Zhu, J., et al. (2022) A Two-Stage En-zymolysis Method and Its Application in Exerting Antioxidant Activity of Walnut Protein. Frontiers in Nutrition, 9, Arti-cle ID: 889434. https://doi.org/10.3389/fnut.2022.889434

  25. 25. Qian, B., Zhao, X., Yang, Y., et al. (2020) Antiox-idant and Anti-Inflammatory Peptide Fraction from Oyster Soft Tissue by Enzymatic Hydrolysis. Food Science & Nutri-tion, 8, 3947-3956. https://doi.org/10.1002/fsn3.1710

  26. 26. Yang, J., Huang, J., Zhu, Z., et al. (2020) Investigation of Optimal Conditions for Production of Antioxidant Peptides from Duck Blood Plasma: Response Surface Methodology. Poultry Science, 99, 7159-7168. https://doi.org/10.1016/j.psj.2020.08.060

  27. 27. Gómez, L.J., Gómez, N.A., Zapata, J.E., et al. (2020) Optimization of the Red Tilapia (Oreochromis spp.) Viscera Hydrolysis for Obtaining Iron-Binding Peptides and Evaluation of in Vitro Iron Bioavailability. Foods, 9, Article No. 883. https://doi.org/10.3390/foods9070883

  28. 28. Lan, M., Li, W., Chang, C., et al. (2020) Enhancement on Enzymolysis of Pigskin with Ultrasonic Assistance. Bioengineered, 11, 397-407. https://doi.org/10.1080/21655979.2020.1736736

  29. 29. Al-Nimry, S., Dayah, A.A., Hasan, I., et al. (2021) Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Marine Drugs, 19, 211-215. https://doi.org/10.3390/md19030145

  30. NOTES

    *通讯作者。