Bioprocess
Vol. 10  No. 03 ( 2020 ), Article ID: 37609 , 5 pages
10.12677/BP.2020.103003

微生物群与肿瘤发生相关性的研究进展

宋晓旭1,邱文生2*

1高密市人民医院,山东 高密

2青岛大学附属医院肿瘤内科,山东 青岛

收稿日期:2020年8月25日;录用日期:2020年9月8日;发布日期:2020年9月15日

摘要

正常微生物群与机体形成共生的关系,与机体健康或疾病状态密切相关。尽管机体内微生物群的组成受到年龄、环境、生活方式等因素的影响,但在正常生理情况下处于稳定状态。微生物群可以参与调节机体代谢、炎症反应和免疫应答等生理过程,维持着机体的局部稳态。近年来,越来越多的研究表明,微生物群与肿瘤的发生具有相关性。本文将综述微生物群影响肿瘤发生发展的研究证据,以及其中所涉及的微生物种类,为肿瘤的精准预防及治疗提供依据。

关键词

微生物群,机体,肿瘤,精准防控

Correlation between Microbiota and Oncogenesis: Research Progress

Xiaoxu Song1, Wensheng Qiu2*

1People’s Hospital of Gaomi, Gaomi Shandong

2Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Aug. 25th, 2020; accepted: Sep. 8th, 2020; published: Sep. 15th, 2020

ABSTRACT

The normal microbiota forms a symbiotic relationship with the body, which is closely related to the body’s health or disease state. Although the composition of the microbiota in the body is affected by factors such as age, environment, and lifestyle, it is in a stable state under normal physiological conditions. The microbiota can participate in the regulation of physiological processes such as metabolism, inflammation and immune response, and maintain the body’s local homeostasis. In recent years, more and more studies have shown that the microbiota is related to the occurrence of cancer. This article will review the research evidence that the microbiota affects the occurrence and development of tumors, as well as the types of microorganisms involved, to provide a basis for the precise prevention and treatment of cancer.

Keywords:Microbiota, Body, Cancer, Precise prevention

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

Lederberg等 [1] 首次提出,人体微生物群是指栖息在人体不同部位(如胃肠系统、呼吸系统、皮肤、生殖系统和口腔等)包含细菌、真菌和病毒等在内的所有微生物及其遗传信息和代谢产物的总称。根据定植部位不同,可将机体微生物群分为消化道微生物群、呼吸道微生物群、泌尿生殖道微生物群等。由于受到机体年龄、生活方式及所处环境的影响,各个部位的微生物群组成比例具有个体化差异 [2]。正常生理情况下,微生物群与机体组织细胞相互作用,保护机体免受病原微生物的入侵,维持机体正常的消化、吸收、代谢等生理过程。然而,在某些因素的刺激下,机体与微生物群的平衡状态会被打破,机体微生物群失调,继而引发疾病 [3]。随着高通量测序技术的发展,人们逐渐认识到微生物对肿瘤发生发展的影响,以其作为肿瘤发生发展危险因素而开展的研究也越来越多。本文就微生物群与不同肿瘤发生发展的相关性研究进展做一综述,为精准操控微生物群提供参考,以期降低肿瘤发生率。

2. 微生物群与头颈部肿瘤的相关性

口腔具备稳定而适宜的温度和酸碱度,为细菌提供了理想的生长和繁殖环境。口腔内含有数百种细菌,数十种细菌属。2000年,Tateda等 [4] 研究者首次提出咽峡炎链球菌可能参与了头颈部肿瘤的发生过程。头颈部肿瘤包括颈部肿瘤、耳鼻喉部肿瘤以及口腔颌面部肿瘤三大部分。目前已有大量证据表明,口腔微生物群与头颈部肿瘤的发生发展之间存在相关性。研究发现包括牙龈卟啉单胞菌、齿垢密螺旋体、链球菌属、念珠菌属、EB病毒、人乳头瘤病毒(HPV)在内的多种微生物均与头颈部肿瘤的发病密切相关。牙龈卟啉单胞菌和链球菌属可能通过诱导慢性炎症、影响细胞增殖与凋亡和免疫抑制等途径来促进口腔癌的发生 [5]。齿垢密螺旋体被发现与口腔鳞癌及口咽部鳞癌的发生发展具有相关性,有研究者通过免疫组化染色,在70%以上的口咽鳞癌样本中检测到齿垢密螺旋体 [6]。口腔念珠菌病与口腔上皮异常增生有关,而引起口腔念珠菌病最常见的念珠菌种为白色念珠菌(53.3%),因此白色念珠菌被认为与口腔上皮恶变密切相关 [7]。EB病毒目前已被确定为鼻咽癌最主要的发病因素,其通过JAK2/STAT3信号通路来上调IL-6表达水平,从而促进癌细胞的增殖 [8]。口腔微生物群是动态变化的,目前研究集中于单一微生物与头颈部肿瘤的关系,后续研究可将多种微生物组合与头颈部肿瘤的发生进行相关性研究。此外,应在动物模型及体外组织培养中证实口腔微生物群引起头颈部肿瘤发生的机制。

3. 微生物群与肺癌的相关性

随着高通量测序技术的发展,我们发现健康状态下的肺部存在着丰富的微生物群 [9]。且有研究发现肺部微生物群主要来源于上呼吸道 [10]。健康成人的肺部微生物群主要由厚壁菌门和拟杆菌门组成 [11]。

研究发现肺癌患者的肺部微生物群较为相似。有研究者对肺癌患者的癌组织样本进行高通量测序,结果发现,非小细胞肺癌患者的肿瘤组织样本中,微生物群主要以变形菌门和拟杆菌门为主,包括不动杆菌属、放线菌属、罗氏菌属等,同时还包括链球菌属、葡萄菌属和假单胞菌属等机会致病菌 [12]。但与健康成人相比,肺癌患者的肺部微生物群构成比例存在明显差异。此外,也有研究在肺癌组织样本中检测到多个相对丰度明显改变的菌属,提示可能存在参与肺癌发生发展的特异性菌属。大型回顾性研究结果显示链球菌属可能是肺癌发生的特异性菌属之一 [13]。不同病理类型以及不同分期的肺癌患者,其肺部微生物群也存在差异 [14] [15]。

机制方面的研究目前较少。一方面,可能由于抗生素的不规范使用导致肺部微生物群失调,进而通过产生毒性因子、介导炎症反应而促进肺癌的发生;另一方面,肺部细菌的一些代谢产物也可能参与了肺癌的发生发展,研究发现肺腺癌患者中相对丰度显著升高的蓝藻菌属分泌的微囊澡素可能与聚腺苷酸二磷酸核糖转移酶-1 (PARP1)的升高相关,而PARP1的表达已被证实具有影响正常组织异常分化及恶变的作用 [12]。未来还需要从细菌代谢产物及炎性介质等方面深入探讨肺部微生物群与肺癌相互作用的机制。

4. 微生物群与消化系统肿瘤的相关性

目前,幽门螺旋杆菌(Helicobacter pylori, Hp)感染与胃癌发病的相关性,已被大量的流行病学及动物实验数据验证。世界卫生组织已于1994年将革兰阴性杆菌Hp定性为胃癌的I类致癌物 [16]。目前认为Hp对胃黏膜上皮细胞的直接表观遗传学作用以及Hp菌株的毒力因子是导致胃癌发生的主要机制 [17]。有研究者运用16sRNA测序分析法发现,胃癌患者的胃内Hp菌株相对丰度下降,而梭杆菌属及卟啉单胞菌属等其他细菌开始占据主导。尽管胃内细菌丰度增多,但菌群种类减少,造成胃内菌群失调的状态,从而推动了胃癌的发展 [18]。

肠道微生物群失调在结直肠癌的发展过程中起促进作用。肿瘤部位的微生物群明显异于周边健康组织 [19]。不同菌种产生的作用不同,包括诱导慢性炎症,增加氧自由基的产生,改变信号通路等 [20]。部分大肠埃希菌携带pks毒力因子,由pks毒力因子编码的聚酮合酶(polyketide synthase, PKS)和非核糖体多肽合酶参与合成的毒素Colibactin会引起肠上皮细胞的DNA双链断裂,与结直肠癌的发生密切相关 [21]。大肠埃希菌所引起的慢性炎症状态会进一步促进大肠杆菌的累积,或使空肠弯曲杆菌产生的细胞致死性扩张毒素增加,从而进一步增强致癌作用 [22]。此外,脆弱拟杆菌产生的脆弱拟杆菌毒素可通过激活WNT/β-catenin信号通路,引起一系列细胞增殖相关基因表达失调而导致细胞恶变 [23]。脆弱拟杆菌毒素还可以通过MAPK信号通路诱导细胞凋亡抑制因子2的表达 [24]。因此,脆弱拟杆菌也与结直肠癌具有高度相关性。

微生物群与肝癌的发生发展也存在相关性。Ni等应用16sRNA高通量测序技术对原发性肝癌患者及健康对照者的粪便成分进行测定,结果发现原发性肝癌患者的粪便中含有较高丰度的变形杆菌及厚壁菌门,变形杆菌和厚壁菌门的增多可作为菌群失调的指标,还研究结果表明在机体在原发性肝癌的发生过程中存在菌群失调 [25]。肠道菌群的产物脂多糖(lipopolysaccharide, LPS)可与与Toll样受体4 (Toll-like receptors 4, TLR4)结合,启动LPS-TLR4信号通路,上调NF-κB途径,产生IL-6、TNF-α等炎性细胞因子,诱导原发性肝癌的发生 [26] [27]。此外,细菌代谢产物脱氧胆酸也在肝癌的发生中起着重要作用。脱氧胆酸可以引起肝脏内多种炎性因子及促肿瘤因子的产生,从而促进肝细胞癌的发生发展 [28] [29]。

5. 微生物群与妇科肿瘤的相关性

阴道微生物群对维持正常阴道微生态环境起着关键作用。正常的阴道微生物群结构简单,以乳酸菌属为优势菌种。乳酸杆菌可以抑制阴道内病原菌的生长 [30]。但在激素紊乱、病毒感染等情况下,出现阴道微生态环境失调,非乳酸杆菌主导的阴道菌群过度繁殖,使得产生乳酸的乳酸杆菌定植减少,降低阴道的局部抗感染能力,使得HPV等致病微生物侵入,进而导致阴道炎症甚至宫颈恶变的发生。HPV的持续感染是目前已被证实的宫颈癌主要发病因素之一。研究表明HPV感染与发生宫颈上皮化生的风险增加有关,而非乳酸杆菌主导的阴道微生态环境会增加感染HPV的可能性,从而增加发生宫颈癌的风险 [31]。也有学者认为,HPV感染导致引导微生物群的改变,引起阴道微生态环境的失调,其他致病菌的侵入引起阴道局部慢性炎症,从而引起肿瘤的发生 [32]。

6. 讨论与展望

正常微生物群对维持机体健康至关重要,特别是在营养物质合成、代谢以及机体免疫等方面发挥着重要作用。目前,微生物群与肿瘤发生发展的相关性已成为研究的热点,过去的研究着重于单一病原体对肿瘤发生的启动和维持。随着测序技术的进步,如今我们已经可以辨别其他的微生物群对肿瘤发生的潜在影响,但因果关系及机制较难明确。此外,目前对于微生物的研究大都以细菌为研究靶点,除细菌以外的其他微生物,如真菌、原生生物、古生菌和病毒,也应当加入研究中,从而完善对微生物群与肿瘤发生关系的全面阐述。为了进一步明确因果关系及机制,可以应用人源化小鼠模型研究进行预实验,在动物模型上对可能机制进行验证。明确微生物群与肿瘤发生发展关系的相关性,通过操纵微生物群,来实现对肿瘤的精准预防及治疗,可以为临床提供更优质的思路和方案。

文章引用

宋晓旭,邱文生. 微生物群与肿瘤发生相关性的研究进展
Correlation between Microbiota and Oncogenesis: Research Progress[J]. 生物过程, 2020, 10(03): 15-19. https://doi.org/10.12677/BP.2020.103003

参考文献

  1. 1. Lederberg, J. (2000) Infectious History. Science, 288, 287-293. https://doi.org/10.1126/science.288.5464.287

  2. 2. Zhernakova, A., Kurilshikov, A. and Bonder, M.J. (2016) Pop-ulation-Based Metagenomics Analysis Reveals Markers for Gut Microbiome Composition and Diversity. Science, 352, 565-569. https://doi.org/10.1126/science.aad3369

  3. 3. Gilbert, J.A., Blaser, M.J., Caporaso, J.G., et al. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400. https://doi.org/10.1038/nm.4517

  4. 4. Tateda, M., Shiga, K., Saijo, S., et al. (2000) Streptococcus Anginosus in Head and Neck Squamous Cell Carcinoma: Implication in Carcinogenesis. International Journal of Molecular Medicine, 6, 699-703. https://doi.org/10.3892/ijmm.6.6.699

  5. 5. Zhang, W.L., Wang, S.S., Wang, H.F., et al. (2019) Who Is Who in Oral Cancer? Experimental Cell Research, 384, Article ID: 111634. https://doi.org/10.1016/j.yexcr.2019.111634

  6. 6. Kylma, A.K., Jouhi, L., Listyarifah, D., et al. (2018) Treponema Denticola Chymotrypsin-Like Proteinase as Associated with HPV-Negative Oropharyngeal Squamous Cell Carcinoma. British Journal of Cancer, 119, 89-95. https://doi.org/10.1038/s41416-018-0143-5

  7. 7. Jahanshiri, Z., Manifar, S., Moosa, H., et al. (2018) Oropharyn-geal Candidiasis in Head and Neck Cancer Patients in Iran: Species Identification, Antifungal Susceptibility and Patho-genic Characterization. Journal de Mycologie Médicale, 28, 361-366. https://doi.org/10.1016/j.mycmed.2018.01.001

  8. 8. Ye, Q., Li, X.L., Chen, Y.S., et al. (2016) Diagnostic Value of Serological Epstein-Barr Viral Antibodies and Epstein-Barr Viral DNA Assays in the Management of Nasopharyngeal Carcinoma. Modern Oncology, 24, 3045-3048.

  9. 9. Dickson, R.P., Erb-Downward, J.R., Martinez, F.J., et al. (2016) The Microbiome and the Respiratory Tract. Annual Review of Physiology, 78, 481-504. https://doi.org/10.1146/annurev-physiol-021115-105238

  10. 10. Bassis, C.M., Erb-downward, J.R., Dickson, R.P., et al. (2015) Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. MBio, 6, e37. https://doi.org/10.1128/mBio.00037-15

  11. 11. Dickson, R.P., Erb-downward, J.R., Freeman, C.M., et al. (2015) Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Annals of the American Thoracic Society, 12, 821-830. https://doi.org/10.1513/AnnalsATS.201501-029OC

  12. 12. Apopa, P.L., Alley, L., Penney, R.B., et al. (2018) PARP1 Is Up-Regulated in Non-Small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcys-tin. Frontiers in Microbiology, 9, 1757. https://doi.org/10.3389/fmicb.2018.01757

  13. 13. Lin, T.Y., Huang, W.Y., Lin, J.C., et al. (2014) Increased Lung Cancer Risk among Patients with Pneumococcal Pneumonia: A Nation-Wide Population-Based Cohort Study. Lung, 192, 159-165. https://doi.org/10.1007/s00408-013-9523-z

  14. 14. Greathouse, K.L., White, J.R., Vargas, A.J., et al. (2018) Interac-tion between the Microbiome and TP53 in Human Lung Cancer. Genome Biology, 19, 123. https://doi.org/10.1186/s13059-018-1501-6

  15. 15. Yu, G., Gail, M.H., Consonni, D., et al. (2016) Characterizing Human Lung Tissue Microbiota and Its Relationship to Epidemiological and Clinical Features. Genome Biology, 17, 163. https://doi.org/10.1186/s13059-016-1021-1

  16. 16. Ishaq, S. and Nunn, L. (2015) Helicobacter pylori and Gastric Cancer: A State-of-the-Art Review. Gastroenterology and Hepatology from Bed to Bench, 8, S6-S14.

  17. 17. He, C., Yang, Z. and Lu, N. (2016) Imbalance of Gastrointestinal Microbiota in the Pathogenesis of Helicobacter pylori-Associated Diseases. Helicobacter, 21, 337-348. https://doi.org/10.1111/hel.12297

  18. 18. Coker, O.O., Dai, Z., Nie, Y., et al. (2018) Mucosal Microbiome Dysbiosis in Gastric Carcinogenesis. Gut, 67, 1024-1032. https://doi.org/10.1136/gutjnl-2017-314281

  19. 19. Nakatsu, G., Li, X., Zhou, H., et al. (2015) Gut Mucosal Micro-biome across Stages of Colorectal Carcinogenesis. Nature Communications, 6, 8727. https://doi.org/10.1038/ncomms9727

  20. 20. Kostic, A.D., Chun, E., Robertson, L., et al. (2013) Fusobacterium Nu-cleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe, 14, 207-215. https://doi.org/10.1016/j.chom.2013.07.007

  21. 21. Dejea, C.M., Fathi, P., Craig, J.M., et al. (2018) Patients with Familial Adenomatous Polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science, 359, 592-597. https://doi.org/10.1126/science.aah3648

  22. 22. He, Z., Gharaibeh, R.Z., Newsome, R.C., et al. (2019) Campylobac-ter jejuni Promotes Colorectal Tumorigenesis through the Action of Cytolethal Distending Toxin. Gut, 68, 289-300. https://doi.org/10.1136/gutjnl-2018-317200

  23. 23. Rubinstein, M.R., Wang, X., Liu, W., et al. (2013) Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe, 14, 195-206. https://doi.org/10.1016/j.chom.2013.07.012

  24. 24. Kim, J.M., Lee, J.Y. and Kim, Y.J. (2008) Inhibition of Apoptosis in Bacteroides fragilis Enterotoxin-Stimulated Intestinal Epithelial Cells through the Induction of c-IAP-2. European Journal of Immunology, 38, 2190-2199. https://doi.org/10.1002/eji.200838191

  25. 25. Ni, J., Huang, R., Zhou, H., et al. (2019) Analysis of the Relationship between the Degree of Dysbiosis in Gut Microbiota and Prognosis at Different Stages of Primary Hepatocellular Carci-noma. Frontiers in Microbiology, 10, 1458. https://doi.org/10.3389/fmicb.2019.01458

  26. 26. Yu, L.X. and Schwabe, R.F. (2017) The Gut Microbiome and Liver Cancer: Mechanisms and Clinical Translation. Nature Reviews Gastroenterology & Hepatology, 14, 527-539. https://doi.org/10.1038/nrgastro.2017.72

  27. 27. Chen, Y., Li, H., Li, M., et al. (2017) Salvia Mihiorrhiza Polysaccha-ride Activates T Lymphocytes of Cancer Patients through Activation of TLRs Mediated-MAPK and NF-κB Signaling Pathways. Journal of Ethnopharmacology, 200, 165-173. https://doi.org/10.1016/j.jep.2017.02.029

  28. 28. Fox, J.G., Feng, Y., Theve, E.J., et al. (2010) Gut Microbes Define Liver Cancer Risk in Mice Exposed to Chemical and Viral Transgenic Hepatocarcinogens. Gut, 59, 88-97. https://doi.org/10.1136/gut.2009.183749

  29. 29. Wang, H., Shang, X., Wan, X., et al. (2016) Increased Hepatocellular Carcinoma Risk in Chronic Hepatitis B Patients with Persistently Elevat-ed Serum Total Bile Acid: A Retrospective Cohort Study. Scientific Reports, 6, Article No. 38180. https://doi.org/10.1038/srep38180

  30. 30. Laniewski, P., Cui, H., Roe, D.J., et al. (2019) Features of the Cervicovag-inal Microenvironment Drive Cancer Biomarker Signatures in Patients across Cervical Carcinogenesis. Scientific Reports, 9, Article No. 7333. https://doi.org/10.1038/s41598-019-43849-5

  31. 31. Klomp, J.M., Boon, M.E., Van Haaften, M., et al. (2008) Cyto-logically Diagnosed Gardnerella vaginalis Infection and Cervical (Pre)neoplasia as Established in Population-Based Cer-vical Screening. American Journal of Obstetrics & Gynecology, 199, 480. https://doi.org/10.1016/j.ajog.2008.04.036

  32. 32. Ilhan, Z.E., Laniewski, P., Thomas, N., et al. (2019) Deciphering the Complex Interplay between Microbiota, HPV, Inflammation and Cancer through Cervicovaginal Metabolic Profiling. EBio Medicine, 44, 675-690. https://doi.org/10.1016/j.ebiom.2019.04.028

  33. NOTES

    *通讯作者。

期刊菜单