Bioprocess
Vol. 13  No. 01 ( 2023 ), Article ID: 62109 , 6 pages
10.12677/BP.2023.131001

TFEB在溶酶体贮积症中的调控作用及 研究进展

程士雪,赵梦丽

浙江工业大学长三角绿色制药协同创新中心,浙江 杭州

收稿日期:2022年12月30日;录用日期:2023年2月27日;发布日期:2023年3月6日

摘要

溶酶体贮积症是一种罕见的遗传缺陷疾病,由于编码溶酶体水解酶、膜转运蛋白或运输蛋白的基因突变,最终导致细胞功能障碍。转录因子EB (TFEB)是自噬和溶酶体生物发生的主要调节因子,可促进溶酶体合成及溶酶体功能的恢复。本文总结了TFEB的调节机制及TFEB的小分子激动剂在溶酶体贮积症的治疗作用及研究进展。

关键词

溶酶体贮积症,转录因子EB,溶酶体

The Regulatory Role and Research Progress of TFEB in Lysosomal Storage Disease

Shixue Cheng, Mengli Zhao

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou Zhejiang

Received: Dec. 30th, 2022; accepted: Feb. 27th, 2023; published: Mar. 6th, 2023

ABSTRACT

Lysosomal storage disorder is a rare genetic defect disorder that ultimately leads to cell dysfunction due to mutations in genes encoding lysosomal hydrolases, membrane transporters, or transport proteins. The transcription factor EB (TFEB) is a major regulator of autophagy and lysosomal biogenesis, which promotes lysosomal synthesis and the recovery of lysosomal function. This article summarizes the regulatory mechanism of TFEB and the therapeutic effect and research progress of small molecule agonists of TFEB in lysosomal storage disease.

Keywords:Lysosomal Storage Disorders, TFEB, Lysosome

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

溶酶体贮积病(lysosomal storage disorders, LSDs)是溶酶体功能相关基因发生遗传变异导致其功能失调进而影响溶酶体正常生理功能,最终导致溶酶体底物的大量贮积。溶酶体贮积病的发病一般是由单一溶酶体底物的积累引起的,但由于贮积物质本身与溶酶体体功能或物质转运的相互复杂影响最终导致一些次级底物的堆积。这些次级底物堆积会进一步影响溶酶体的功能,最终导致机体产生严重的疾病。溶酶体贮积病常常与神经退行性疾病相伴发生,如阿尔兹海默症、帕金森综合征。作为一类遗传疾病,溶酶体贮积病目前无法完全根治。目前的治疗手段主要是通过降低溶酶体内底物堆积来减轻该类疾病的进展 [1] 。由于酶体贮积病具有共通的表型,而在多数LSDs中。因此研究者猜想,提高溶酶体的整体功能是否能缓解LSDs症状。调控溶酶体功能可以通过以下上调溶酶体相关基因的合成来上调溶酶体的功能,溶酶体相关基因大都受到转录因子TFEB的调控,因此转录因子TFEB是治疗溶酶体贮积症的潜在治疗靶点。

2. 溶酶体及溶酶体贮积症

溶酶体是真核细胞中一种重要的细胞器,大约有60种酸性水解酶在溶酶体腔中富集 [2] 。溶酶体是细胞的降解中心,主要负责将蛋白质、多糖和复杂的脂质分解成各自的组成小分子:氨基酸(AA)、单糖和游离脂肪酸等。溶酶体存在于所有真核细胞中。在超微结构上,溶酶体在胞质中表现为致密体,通常呈核周模式。溶酶体的形状从球形到有时呈管状不等。溶酶体的大小因细胞类型而异,在大多数细胞中,溶酶体直径通常为0.1微米,尽管在某些细胞(例如巨噬细胞)中,直径可能超过几微米 [3] 。由于溶酶体内未降解物质的积累,溶酶体的大小和数量会急剧增加,导致溶酶体的生物发生功能进一步增强 [4] 。

溶酶体膜含有大量的经过糖基化修饰的膜蛋白,形成7~10 nM厚的糖萼样层,它可以调节物质的跨膜运输、酸化和膜稳定性 [5] 。目前已经被鉴定出25种溶酶体膜蛋白,在溶酶体膜上最丰富的膜蛋白是溶酶体相关膜蛋白1和溶酶体相关膜蛋白2 (LAMP1、LAMP2)以及CD63 (LAMP-3,溶酶体相关膜蛋白3) [6] 。近年越来越多的研究表明,溶酶体不仅是细胞内的“消化中心”,同时在营养信号的感知和传导、基因的转录调控、细胞死亡、质膜修复等过程中发挥关键作用 [7] [8] [9] 。研究表明,溶酶体功能受损与很多疾病的发生密切相关,包括溶酶体贮积症、神经退行性疾病、自身免疫代谢疾病等 [10] [11] [12] 。

溶酶体贮积症是一种由编码溶酶体水解酶、溶酶体膜转运蛋白或运输蛋白的基因突变而导致大量未降解产物在溶酶体中积累的一类疾病。溶酶体贮积症根据所涉及的贮积底物和病理特征的不同分为为脂质贮积症(鞘脂症、神经节苷脂症 [13] )、粘多糖贮积症、糖蛋白贮积症、粘脂贮积症和胱氨酸症 [14] [15] 。溶酶体贮积症以常染色体隐性遗传或在某些疾病中以X连锁方式遗传,该疾病典型的临床症状包括肝脾肿大、骨骼异常、痴呆、耳聋、失明和运动障碍等问题 [3] 。值得注意是,溶酶体功能障碍已在几种常见的神经退行性疾病中被发现,包括迟发性神经退行性疾病(例如帕金森病、阿尔茨海默病和亨廷顿病)、以及肌萎缩侧索硬化 [16] [17] 。

3. TFEB的结构和功能

TFEB是一种由476个氨基酸组成的蛋白质残基。TFEB包含四个功能域,即N端与转录活性相关的保守激活域、与DNA结合所必需的基本结构域、与同源或异源二聚体形成的螺旋–环–螺旋结构域和亮氨酸拉链结构域 [18] 。转录因子TFEB是MiTF/TFE家族成员,MiTF/TFE家族包含小眼畸形相关转录因子(microphthalmia-associated transcription factor, MiTF)、TFEB、TFE3、TFEC四个成员。MiTF/TFE家族具有一个相同的基本结构域,该结构域是DNA的结合区域 [19] 。同时MiTF/TFE家族还具有相似的螺旋–环–螺旋(helix-loop-helix, HLH)结构域和亮氨酸拉链(leucine zipper, Zip)结构域,这两个结构域与其形成同源或异源密切相关。研究表明,TFEB被鉴定为负责协调溶酶体基因表达的启动子基序和能与CLEAR元件结合的转录因子。溶酶体表达和调节网络(the coordinated lysosomal expression and regulation CLEAR network)参与自噬、溶酶体生物发生、溶酶体胞吐、内吞和膜修复等过程的基因组成 [20] [21] [22] 。转录因子TFEB是通过正向调控自噬体形成以及自噬体–溶酶体融合来协调自噬的发生。因此,TFEB是正向调节细胞降解途径的关键基因。

4. TFEB的调控机制

TFEB的活性通过其亚细胞定位来反映,磷酸化状态的有TFEB活性有密切的关系。在营养条件充足的情况下,TFEB是定位在细胞质中。当细胞受到压力刺激,例如饥饿、溶酶体功能受损等,这些刺激会导致TFEB的定位从细胞质中转移到细胞核,同时会促进相关转录基因的表达。TFEB的活性和核易位也与磷酸化的状态相关 [23] 。特别是,Ser142和Ser211被确定为在营养丰富的条件下被磷酸化,并且这些丝氨酸被突变为丙氨酸,使TFEB的核易位明显增强。当TFEB存在于细胞质时,它可以位于细胞质和溶酶体表面与mTORC1进行相互作用。mTORC1参与TFEB的调控是通过溶酶体营养感应机制来感知营养条件,并向细胞核发出信号以适应饥饿和营养充足的环境 [24] 。氨基酸和V-ATPase相互作用以调节 Rag GTPase,然后通过将mTORC1转运到溶酶体表面来激活mTORC1。在溶酶体膜表面,mTORC1和TFEB相互结合,在营养充足的条件下,进行磷酸化使其定位在细胞质中 [25] 。通过药物抑制mTORC1,TFEB将在细胞核中聚集。除了药物抑制mTORC1活性外,通过基因手段敲低Rag GTPases,mTORC1发出信号的溶酶体营养感应机制的一部分,即使在营养存在的情况下,它也会导致TFEB的核易位。TFEB除了作为自噬–溶酶体主要调控基因外,TFEB还通过饥饿诱导的自调节环来调节其自身的表达。值得注意的是,TFEB过表达和激活TFEB可以促进大量自噬底物的降解以及脂滴的清除,从而进一步说明TFEB在机体某些特殊自噬中发挥重要作用,比如脂噬。研究表明,TFEB过度表达可促进细胞清除,从而改善多种疾病的表型 [21] ,如多发性硫酸酯酶缺乏症、庞贝病、以及阿尔茨海默病、帕金森病和亨廷顿病等神经退行性疾病 [26] 。事实上,多项研究表明TFEB的外源性表达与内源性TFEB药理激活在LSD动物模型中减弱疾病表征的作用。

5. TFEB在溶酶体贮积症中的调控作用

5.1. 庞贝疾病(Pompe disease)

庞贝病是第一个被确认的溶酶体贮积疾病,也称为II型糖原贮积病(GSDII),是一种罕见的常染色体隐性神经肌肉疾病 [27] 。庞贝病的致病原因是由于缺乏酸性麦芽糖酶,也称为酸性α-葡萄糖苷酶(GAA)而引起的疾病。酸性麦芽糖酶是溶酶体中将糖原分解代谢成葡萄糖的主要水解酶 [28] 。GAA活性缺乏或不足导致溶酶体糖原积累,主要影响心肌和骨骼肌。

在庞贝病中,肌纤维损伤是一个重要的临床表征。肌肉损伤反应越来越多的研究表明,溶酶体自噬途径在庞贝病中的治疗作用受到广泛关注。骨骼肌的正常生理功能很大程度上依赖自噬,因为肌肉纤维是终末分化细胞,无法通过细胞分裂分裂和清除楚异常蛋白质和细胞器。现在已经证实,自噬活动的过强或者过弱都会对肌肉功能产生负面影响,从而导致肌肉萎缩。自噬底物的积累也是肌肉疾病的一个显著特征。因此庞贝病又称“自噬空泡性肌病” [29] [30] 。

研究证明,TFEB是PD治疗的潜在靶点:通过在肌肉细胞培养系统和庞贝病小鼠模型中的过度表达TFEB可以减轻糖原负荷和溶酶体大小,改善了自噬体发展的进程,并减轻了自噬性空泡的过度积累 [31] [32] 。

5.2. C型尼曼–匹克病(Niemann-Pick Type C Disease)

C型尼曼–匹克氏症(Niemann-Pick disease type C, NPC)是一种神经退行性酸性隔室脂质贮存疾病,该疾病会导致胆固醇和其他酸性鞘磷脂在溶酶体中积累。临床证据表明,大约有95%的NPC患者存在NPC1基因缺失,5%的患者存在NPC2基因缺失 [33] 。这两种基因分别具有不同的功能,NPC1基因编码溶酶体的限制性跨膜蛋白,其可促进溶酶体内吞作用、胆固醇代谢和钙稳态。NPC2可将未酯化的胆固醇传递到溶酶体限制膜中NPC1的N端结构域(NTD)。NPC1或NPC2基因的缺失会导致酸性区室(我们将其定义为晚期内体和溶酶体)中胆固醇的大量积累 [34] 。临床上主要症状表现为肝脾肿大以及认知功能障碍。C型尼曼–匹克氏症多发于幼儿时期,新生儿患病率约为1/90,000,少数在中青年时期发病,患者多在发病后的5~20年内死亡。C型尼曼–匹克氏症临床表征为患者表现出进行性神经系统缺陷、儿童时期运动发育迟缓、以及青少年时期表现出步态不协调、笨拙等问题 [35] 。

大量的证据表明在溶酶体贮积症中溶酶体的贮积会损害自噬,溶酶体–自噬途径受损会导致未降解蛋白质和功能失调细胞器的积累,从而引起自噬应激和细胞的死亡。自噬的转录调控通过TFEB发生,TFEB可以调控自噬和溶酶体生物发生相关的基因表达。转录因子TFEB是自噬–溶酶体调控途径的重要环节,因此TFEB在神经退行性疾病中的作用受到广泛关注。近期研究表明在药物和遗传作用下抑制酪氨酸激酶(c-Abl),使TFEB易位到细胞核并促进其靶基因的表达,从而促进C型尼曼–匹克疾病模型中胆固醇的清除。

研究表明在C型尼曼–匹克疾病的细胞模型中金雀异黄素促进TFEB发生细胞核易位。金雀异黄素治疗改善了溶酶体蛋白表达和自噬通量,并促进溶酶体胞吐,表明金雀异黄素介导的TFEB激活可改善NPC模型的病理表型 [36] 。

6. 总结与展望

几年来,多种溶酶体贮积症被鉴定和发现,对溶酶体贮积症的治疗也取得了显著的成效。但由于病情的罕见及现有技术的限制,使得溶酶体贮积症在治疗、诊断方面仍面临重重困难。TFEB作为溶酶体和自噬相关蛋白的转录因子,明确其在疾病中的具体作用机制将是后续的研究重点。同时研究人员发现在溶酶体贮积症中TFEB的调节作用及其活性的改变可能为溶酶体贮积症的治疗提供了新的治疗靶点的。探究天然小分子TFEB激动剂在溶酶体贮积症中的具体作用机制可为相关疾病自噬–溶酶体功能障碍导致的溶酶体贮积症及神经元变性疾病提供一种新的潜在治疗药物,但TFEB激动剂是否存在其他副作用仍需进一步明确。

文章引用

程士雪,赵梦丽. TFEB在溶酶体贮积症中的调控作用及研究进展
The Regulatory Role and Re-search Progress of TFEB in Lysosomal Storage Disease[J]. 生物过程, 2023, 13(01): 1-6. https://doi.org/10.12677/BP.2023.131001

参考文献

  1. 1. Ballabio, A. (2016) The Awesome Lysosome. EMBO Molecular Medicine, 8, 73-76. https://doi.org/10.15252/emmm.201505966

  2. 2. Xu, H. and Ren, D. (2015) Lysosomal Physiology. Annual Re-view of Physiology, 77, 57-80. https://doi.org/10.1146/annurev-physiol-021014-071649

  3. 3. Ferreira, C.R. and Gahl, W.A. (2017) Lysosomal Storage Diseases. Translational Science of Rare Diseases, 2, 1-71. https://doi.org/10.3233/TRD-160005

  4. 4. Settembre, C. and Ballabio, A. (2014) Lysosomal Adaptation: How the Lysosome Responds to External Cues. Cold Spring Harbor Perspectives in Biology, 6, Article ID: a016907. https://doi.org/10.1101/cshperspect.a016907

  5. 5. Eskelinen, E.-L., Tanaka, Y. and Saftig, P. (2003) At the Acidic Edge: Emerging Functions for Lysosomal Membrane Proteins. Trends in Cell Biology, 13, 137-145. https://doi.org/10.1016/S0962-8924(03)00005-9

  6. 6. Saftig, P. and Klumperman, J. (2009) Lysosome Biogenesis and Lysosomal Membrane Proteins: Trafficking Meets Function. Nature Reviews Molecular Cell Biology, 10, 623-635. https://doi.org/10.1038/nrm2745

  7. 7. Settembre, C., Fraldi, A., Medina, D.L. and Ballabio, A. (2013) Signals from the Lysosome: A Control Centre for Cellular Clearance and Energy Metabolism. Nature Reviews Molecular Cell Biology, 14, 283-296. https://doi.org/10.1038/nrm3565

  8. 8. Lawrence, R.E. and Zoncu, R. (2019) The Lysosome as a Cellular Centre for Signalling, Metabolism and Quality Control. Nature Cell Biology, 21, 133-142. https://doi.org/10.1038/s41556-018-0244-7

  9. 9. Medina, D.L., et al. (2011) Transcriptional Activation of Lysoso-mal Exocytosis Promotes Cellular Clearance. Developmental Cell, 21, 421-430. https://doi.org/10.1016/j.devcel.2011.07.016

  10. 10. Lieberman, A.P., et al. (2012) Autophagy in Lysosomal Storage Disorders. Autophagy, 8, 719-730. https://doi.org/10.4161/auto.19469

  11. 11. Peng, W., Minakaki, G., Nguyen, M. and Krainc, D. (2019) Preserving Lysosomal Function in the Aging Brain: Insights from Neurodegeneration. Neurotherapeutics, 16, 611-634. https://doi.org/10.1007/s13311-019-00742-3

  12. 12. Seranova, E., et al. (2017) Dysregulation of Autophagy as a Common Mechanism in Lysosomal Storage Diseases. Essays in Biochemistry, 61, 733-749. https://doi.org/10.1042/EBC20170055

  13. 13. Breiden, B. and Sandhoff, K. (2019) Lysosomal Glycosphingolipid Storage Diseases. Annual Review of Biochemistry, 88, 461-485. https://doi.org/10.1146/annurev-biochem-013118-111518

  14. 14. Parenti, G., Pignata, C., Vajro, P. and Salerno, M. (2013) New Strategies for the Treatment of Lysosomal Storage Diseases (Review). International Journal of Molecular Medicine, 31, 11-20. https://doi.org/10.3892/ijmm.2012.1187

  15. 15. Schulze, H. and Sandhoff, K. (2011) Lysosomal Lipid Storage Diseases. Cold Spring Harbor Perspectives in Biology, 3, Article ID: a004804. https://doi.org/10.1101/cshperspect.a004804

  16. 16. Robak, L.A., et al. (2017) Excessive Burden of Lysosomal Stor-age Disorder Gene Variants in Parkinson’s Disease. Brain, 140, 3191-3203. https://doi.org/10.1093/brain/awx285

  17. 17. Rui, Y.-N., et al. (2015) Huntingtin Functions as a Scaffold for Selective Macroautophagy. Nature Cell Biology, 17, 262-275. https://doi.org/10.1038/ncb3101

  18. 18. Steingrímsson, E., Copeland, N.G. and Jenkins, N.A. (2004) Melanocytes and the Microphthalmia Transcription Factor Network. Annual Review of Genetics, 38, 365-411. https://doi.org/10.1146/annurev.genet.38.072902.092717

  19. 19. Napolitano, G. and Ballabio, A. (2016) TFEB at a Glance. Journal of Cell Science, 129, 2475-2481. https://doi.org/10.1242/jcs.146365

  20. 20. Settembre, C., et al. (2011) TFEB Links Autophagy to Lysosomal Biogen-esis. Science, 332, 1429-1433. https://doi.org/10.1126/science.1204592

  21. 21. Settembre, C., et al. (2013) TFEB Controls Cellular Lipid Metabolism through a Starvation-Induced Autoregulatory Loop. Nature Cell Biology, 15, 647-658. https://doi.org/10.1038/ncb2718

  22. 22. Xu, Y., et al. (2021) TFEB Regulates Lysosomal Exocytosis of Tau and Its Loss of Function Exacerbates Tau Pathology and Spreading. Molecular Psychiatry, 26, 5925-5939. https://doi.org/10.1038/s41380-020-0738-0

  23. 23. Napolitano, G., et al. (2018) mTOR-Dependent Phosphorylation Controls TFEB Nuclear Export. Nature Communications, 9, Article No. 3312. https://doi.org/10.1038/s41467-018-05862-6

  24. 24. Puertollano, R., Ferguson, S.M., Brugarolas, J. and Ballabio, A. (2018) The Complex Relationship between TFEB Transcription Factor Phosphorylation and Subcellular Localization. The EMBO Journal, 37, e98804. https://doi.org/10.15252/embj.201798804

  25. 25. Nnah, I.C., et al. (2019) TFEB-Driven Endocytosis Coordinates MTORC1 Signaling and Autophagy. Autophagy, 15, 151-164. https://doi.org/10.1080/15548627.2018.1511504

  26. 26. Giatromanolaki, A., et al. (2015) Increased Expression of Transcription Factor EB (TFEB) Is Associated with Autophagy, Migratory Phenotype and Poor Prognosis in Non-Small Cell Lung Cancer. Lung Cancer, 90, 98-105. https://doi.org/10.1016/j.lungcan.2015.07.008

  27. 27. Lim, J.-A., Sun, B., Puertollano, R. and Raben, N. (2018) Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Molecular Therapy, 26, 1783-1796. https://doi.org/10.1016/j.ymthe.2018.04.025

  28. 28. Raben, N., et al. (2010) Suppression of Autophagy Permits Suc-cessful Enzyme Replacement Therapy in a Lysosomal Storage Disorder—Murine Pompe Disease. Autophagy, 6, 1078-1089. https://doi.org/10.4161/auto.6.8.13378

  29. 29. van der Ploeg, A.T. and Reuser, A.J. (2008) Pompe’s Disease. Lancet, 372, 1342-1353. https://doi.org/10.1016/S0140-6736(08)61555-X

  30. 30. Kishnani, P.S., et al. (2006) Pompe Disease Diagnosis and Management Guideline. Genetics in Medicine, 8, 267-288. https://doi.org/10.1097/01.gim.0000218152.87434.f3

  31. 31. Spampanato, C., et al. (2013) Transcription Factor EB (TFEB) Is a New Therapeutic Target for Pompe Disease. EMBO Molecular Medicine, 5, 691-706. https://doi.org/10.1002/emmm.201202176

  32. 32. Feeney, E.J., et al. (2013) What Else Is in Store for Autophagy? Exocytosis of Autolysosomes as a Mechanism of TFEB-Mediated Cellular Clearance in Pompe Disease. Autophagy, 9, 1117-1118. https://doi.org/10.4161/auto.24920

  33. 33. Wheeler, S. and Sillence, D.J. (2020) Niemann-Pick Type C Disease: Cel-lular Pathology and Pharmacotherapy. Journal of Neurochemistry, 153, 674-692. https://doi.org/10.1111/jnc.14895

  34. 34. Pfeffer, S.R. (2019) NPC Intracellular Cholesterol Transporter 1 (NPC1)-Mediated Cholesterol Export from Lysosomes. Journal of Biological Chemistry, 294, 1706-1709. https://doi.org/10.1074/jbc.TM118.004165

  35. 35. Pallottini, V. and Pfrieger, F.W. (2020) Understanding and Treat-ing Niemann-Pick Type C Disease: Models Matter. International Journal of Molecular Sciences, 21, Article No. 8979. https://doi.org/10.3390/ijms21238979

  36. 36. Arguello, G., et al. (2021) Genistein Activates Transcription Factor EB and Corrects Niemann-Pick C Phenotype. International Journal of Molecular Sciences, 22, Article No. 4220. https://doi.org/10.3390/ijms22084220

期刊菜单