Sustainable Energy
Vol. 09  No. 05 ( 2019 ), Article ID: 33062 , 8 pages
10.12677/SE.2019.95007

Present Status and Prospect of Thermophysical Properties Calculation of Ammonia-Water Mixture Used as Working Fluid

Xinxin Zhang1,2*, Maogang He3, Jingfu Wang1,2

1MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing

2Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing

3MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an Shaanxi

Received: Oct. 31st, 2019; accepted: Nov. 14th, 2019; published: Nov. 21st, 2019

ABSTRACT

Nowadays, ammonia-water mixture is widely used in absorption refrigeration and low-grade heat energy utilization. The working conditions of ammonia-water mixture in the above two application fields are quite different, so it is of great significance to study its thermophysical properties. This paper briefly reviews the overall research status of the calculation of thermophysical properties of ammonia-water mixture, and analyses the respective characteristics of the equation of state method and Refprop, an international authoritative software for calculating the thermophysical properties of ammonia-water mixture. On this basis, the research prospects are given.

Keywords:Ammonia-Water, Mixture, Equation of State, Refprop, Present Status, Prospect

氨水混合工质热物理性质计算现状及展望

张新欣1,2*,何茂刚3,王景甫1,2

1北京工业大学环境与能源工程学院,传热强化与过程节能教育部重点实验室,北京

2北京工业大学环境与能源工程学院,传热与能源利用北京市重点实验室,北京

3西安交通大学能源与动力工程学院,热流科学与工程教育部重点实验室,陕西 西安

收稿日期:2019年10月31日;录用日期:2019年11月14日;发布日期:2019年11月21日

摘 要

现今氨水混合工质被广泛的应用于吸收式制冷及中低品位热能利用领域。而氨水混合工质在以上两个应用领域中所对应的工况范围有较大差别,因此对其热物理性质的探讨研究具有十分重要的意义。本文简要综述了氨水混合工质热物理性质计算的整体研究现状,并分析了状态方程法及国际权威工质物性计算软件Refprop用于计算氨水混合工质热物理性质时各自的特点,在此基础上给出了研究展望。

关键词 :氨水,混合工质,状态方程,Refprop,现状,展望

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

工质在热力学循环中起着至关重要的作用。采用何种工质以及工质自身的性质将会影响一个热力学循环系统的效率、运行条件、系统对环境的影响以及系统在经济上的可行性。以氨水混合物作为工质的吸收式制冷系统以工业余热或其它可回收利用的热源为驱动能源,常被应用作工业工艺生产过程之中的冷源。为了减缓能源危机以及解决传统化石能源消耗所引发的一系列问题,必须对各种总量巨大、资源集中的中低品位热能以及余热资源加以回收利用。在此领域,有机朗肯循环(Organic Rankine Cycle, ORC)及kalina循环是被研究应用最多的两种技术。而由于现今尚不存在一种具有良好热力学性能的同时具有良好的环保指标(臭氧消耗潜势ODP为零,全球变暖潜势GWP很低),且满足无毒不可燃的安全性要求的理想有机工质,加之Kalina循环在很多工况下的热力学性能优于有机朗肯循环,故采用氨水混合物为工质的Kalina循环引发了越来越多的关注与研究。

氨水混合工质可以说是氨水吸收式制冷循环和Kalina循环的灵魂。与纯水和纯氨均不同,氨水有其很多特有的基本特性。纯水和纯氨的混合物表现的就好比是一种全新的工质。本文简要综述了氨水混合工质热物理性质计算的整体研究现状,并分析了状态方程法及国际权威工质物性计算软件Refprop用于计算氨水混合工质热物理性质时各自的特点,在此基础上给出了研究展望。

2. 氨水混合工质热物理性质计算研究现状

2.1. 纯氨与纯水的热物理性质

氨水混合工质是由纯氨与纯水混合而成。氨和水都是自然工质,价格较低且二者的热物理性质已被人们广为研究。表1对比列出了纯氨与纯水的基本热物理性质。

N和O元素在元素周期表中相邻,两种元素的氢化物NH3和H2O分子质量为17和18,且氨和水都较为稳定,最重要的是氨与水因为能形成氢键,所以表现出极强的互溶性,一体积水能与700体积氨互溶,形成氨水混合工质。国际上专门成立了国际水和蒸汽性质协会(The International Association for the Properties of Water and Steam, IAPWS)来研究纯水的热物理性质。

Table 1. Comparison of basic physical properties between pure ammonia and pure water

表1. 纯氨与纯水的基本物理性质对比

2.2. 氨水混合工质热物理性质计算研究现状

氨水混合工质可以说是氨水吸收式制冷循环和Kalina循环的灵魂。与纯水和纯氨均不同,氨水混合工质有其很多特有的基本特性。纯水和纯氨的混合物表现的就好比是一种全新的工质。纯水和纯氨的混合物表现的就好比是一种全新的工质。与纯水和纯氨的性质相比,氨水混合物主要有四点不同 [1]:1) 氨水混合物的蒸发温度和冷凝温度是可变。相反地,纯水和纯氨的蒸发温度和冷凝温度都是恒定;2) 其次,通过改变氨水混合物的浓度,可以改变其热物理性质,而纯水和纯氨的热物理性质都是稳定不变的;3) 在不改变热容量的前提下,氨水的热物理性质可以使其温度升高或降低,而纯水和纯氨在不改变热能容量的情况下其温度不会发生变化;4) 最后一个不同点谈不上是基本特征的改变,但却是流体性质上的重要改变。这就是冰点温度的不同。纯水在相对较高的温度0℃时结冰,而纯氨在−78℃时凝固。氨水混合物则具有非常低的冰点温度。

针对氨水混合物的热物理性质,不同的研究者提出了40多个关联式 [2] - [46]。这些关联式的理论背景与理论基础可以划分为9大类:立方型状态方程 [4] - [17] 、维里型状态方程 [16] [18] [19] [20] 、Gibbs自由能理论 [2] [3] [7] [10] [13] [15] [16] [17] [19] - [34] 、对应态方法 [35] - [40] 、微扰动理论 [33] [41] 、基团贡献理论 [12] [42] 、Leung-Griffiths模型 [43] 、Helmoltz自由能理论 [44] 和多项式函数 [45] [46]。

随着Kalina循环技术的提出与进一步开发,Kalina本人创建的Exergy公司对氨水的性质进行了一系列的研究工作。1998年,Exergy公司结合大量研究者的实验数据和Kalina与Tribus等人提出的理论,给出了第一套氨水性质数据。此项工作主要是通过采用一个名为“WATAM”的计算机程序来完成的,此程序参与了之前Exergy公司所有Kalina循环电厂的设计工作 [47]。对比WATAM与PR状态方程在高压氨水系统上的建模,可以发现,虽然PR状态方程提供了一个合理的气液相平衡拟合,但其在近临界气相区对氨水浓度的估算过高。PR状态方程对混合工质的临界压力同样估算的偏高。WATAM对气液相平衡的描述稍微更加精确,特别是在近临界区。相比PR状态方程,WATAM提出了一个优秀很多的用于描述氨水混合物饱和液态密度的关联式 [3]。

然而鉴于状态方程法在流体热物理性质推算方面的优势,现今很多针对氨水混合工质热物理性质的推算仍集中于此。比如选取PR (Peng-Robinson)方程,根据相平衡原理,采用混合法则,进行氨水相平衡时的泡点参数的计算,需要的计算参数少,具有一定的通用性。已知压力和液相浓度,针对压力为20 atm、18 atm、16 atm、14 atm四种情况,利用计算程序计算泡点温度和气相浓度,并与参考值对比,拟合误差公式,对计算程序进行修正。经修正后,氨水泡点温度和气相浓度的平均相对误差分别为0.24%,0.3% [48]。

对比Gibbs自由能理论与Helmoltz自由能理论用于氨水混合工质热物理性质的计算结果,可以发现:此两种模型都是以自由焓为基础的半经验方法。Helmoltz模型有很广的温度压力适用范围,并且计算结果精度很高。Gibbs模型在所适用的温度压力范围内的计算精度接也很高,且Gibbs模型有形式相对较为简单,更容易实现。通过两种方法与实验数据的对比发现两种模型在他们适用的范围都有很高的精度,但Helmoltz模型相对来说有更高的精度,适用范围更广。而Gibbs模型相对于Helmoltz模型方程系数很少,简单很多,在中低压范围内也可以选用较为简单的Gibbs自由焓模型 [49]。

由美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)研制的用于工质热物理性质计算的权威软件Refprop [50] 在进行氨水混合工质计算的时候采用的是Tillner-Roth R与Friend D G的论文中提出的模型 [44]。此论文提出了一个用于氨水混合工质Helmholtz自由能的基本状态方程。方程覆盖了固–液–气边界与临界中心之间的热力学空间。压力不高于40 MPa时方程在气相和液相均有效。对于液相和气相组分,方程表征的气液固性质的不确定度为0.01;单相区的标准不确定度对密度而言为0.3%,焓值为±200 J/mol [44]。

利用Refprop软件计算得到的不同浓度下氨水混合工质的临界性质如表2所示。以10个百分点为递进步长,以不同浓度下氨水混合工质的临界温度为计算温度的上限,计算浓度为10%~90%的氨水混合工质的热物理性质时,无法得到准确结果的温度区间范围如表2所示。由表2可以看出,随着氨水浓度的增加,氨水混合工质的临界温度、临界压力和临界密度均呈下降趋势。图1给出了不同氨水浓度时无法得到准确结果的温度区间范围。

Table 2. The critical properties of ammonia water mixtures at different concentrations and the temperature range for which accurate results cannot be obtained by using Refprop software

表2. 不同浓度下氨水混合工质的临界性质及Refprop软件计算氨水混合工质无法得到准确结果的温度区间

Figure 1. Temperature range that can not be accurately calculated for different concentration of ammonia water mixtures

图1. 不同浓度氨水混合工质无法精准计算的温度区间

3. 氨水混合工质热物理性质计算研究展望

以上一小节可知,对于不同浓度的氨水混合工质的热物理性质计算均存在无法得到准确计算结果的温度区间。且这些温度区间有的处于亚临界区,有的处于跨临界区,有的处于超临界区。这些无法得到准确计算结果的温度区间是未来需要着重研究的。

此外,当今可用的大部分氨水混合物的热力学性质关联式所适用的温度和压力较之电厂常见的温度和压力要低。当用于简单型Kalina循环的模拟时,使用一些之前用于氨水动力循环模拟的关联式所计算得到的循环效率的差别不高于3%。然而在高温高压及高氨水浓度时,使用不同关联式来计算饱和性质,则得到的结果之间差别很大。相比旧的用于动力循环模拟的关联式,即使使用新的理论上更加合理的关联式,二者对循环效率的模拟的最终结果仍然相差很小。故基于原有旧的关联式所进行的研究所得到的结论仍然是合理的。然而需要指出的是,几乎没有氨水混合工质在临界区和超临界区的实验数据报道,故在这些区域氨水混合工质的性质仍然是未知的 [51] [52] [53]。

4. 结论

针对氨水混合物的热物理性质计算,现今所提出的关联式主要可以分为9大类:立方型状态方程、维里型状态方程、Gibbs自由能理论、对应态方法、微扰动理论、基团贡献理论、Leung-Griffiths模型、Helmoltz自由能理论和多项式函数。

对于不同浓度的氨水混合工质的热物理性质计算均存在无法得到准确计算结果的温度区间。这些温度区间有的处于亚临界区,有的处于跨临界区,有的处于超临界区。这些无法得到准确计算结果的温度区间是未来需要着重研究的。

几乎没有氨水混合工质在临界区和超临界区的实验数据报道,故在这些区域氨水混合工质的性质仍然是未知的。

基金项目

北京市教育委员会科技计划一般项目(KM201710005029)。

文章引用

张新欣,何茂刚,王景甫. 氨水混合工质热物理性质计算现状及展望
Present Status and Prospect of Thermophysical Properties Calculation of Ammonia-Water Mixture Used as Working Fluid[J]. 可持续能源, 2019, 09(05): 53-60. https://doi.org/10.12677/SE.2019.95007

参考文献

  1. 1. Micak, H.A. (1996) An Introduction to the Kalina Cycle. Proceedings of the International Joint Power Generation Conference, Houston, TX.

  2. 2. Nag, P.K. and Gupta, A.V.S.S.K.S. (1998) Exergy Analysis of the Kalina Cycle. Applied Thermal Engineering, 18, 427-439. https://doi.org/10.1016/S1359-4311(97)00047-1

  3. 3. Enick, R.M., Donahey, G.P. and Holsinger, M. (1998) Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of State for Kalina Cycle Studies. Industrial & Engineering Chemistry Research, 37, 1644-1650. https://doi.org/10.1021/ie970638s

  4. 4. Peng, D.Y. and Robinson, D.B. (1980) Two- and Three-Phase Equilibrium Calculations for Coal Gasification and Related Processes. In: Thermodynamics of Aqueous Systems with Industrial Applications, American Chemical Society, Washington DC, 393-414. https://doi.org/10.1021/bk-1980-0133.ch020

  5. 5. Skogestad, S. (1983) Experience in Norsk Hydro with Cubic Equations of State. Fluid Phase Equilibria, 13, 179-188. https://doi.org/10.1016/0378-3812(83)80092-2

  6. 6. Renon, H., Guillevic, J.L., Richon, D., Boston, J. and Britt, H. (1986) A Cubic Equation of State Representation of Ammonia—Water Vapour—Liquid Equilibrium Data. International Journal of Refrigeration, 9, 70-73. https://doi.org/10.1016/0140-7007(86)90035-6

  7. 7. Iseli, M. (1985) Experimentelle und Thermodynamische Untersuchung des Siedegleichgewichtes des Systems NH3-H2O. Eidgenössischen Technischen Hochschule, Zürich.

  8. 8. Stryjek, R. and Vera, J.H. (1986) PRSV—An Improved Peng-Robinson Equation of State with New Mixing Rules for Strongly Nonideal Mixtures. The Canadian Journal of Chemical Engineering, 64, 334-340. https://doi.org/10.1002/cjce.5450640225

  9. 9. Sturnfield, E.A. and Matherne, J.L. (1988) Modeling of a Complex, Polar System with a Modified Soave-Redlich- Kwong Equation.

  10. 10. Huang, H. (1990) A New Mixing Rule for the Patel-Teja Equation of State. Study of Vapor-Liquid Equilibria. Fluid Phase Equilibria, 58, 93-115. https://doi.org/10.1016/0378-3812(90)87007-C

  11. 11. Smolen, T.M., Manley, D.B. and Poling, B.E. (1991) Vapor-Liquid Equilibrium Data for the Ammonia-Water System and Its Description with a Modified Cubic Equation of State. Journal of Chemical & Engineering Data, 36, 202-208. https://doi.org/10.1021/je00002a017

  12. 12. Moshfeghian, M., Shariat, A. and Maddox, R.N. (1992) Prediction of Refrigerant Thermodynamic Properties by Equations of State: Vapor Liquid Equilibrium Behavior of Binary Mixtures. Fluid Phase Equilibria, 80, 33-44. https://doi.org/10.1016/0378-3812(92)87053-P

  13. 13. Peters, R. and Keller, J.U. (1993) Ein Assoziationsmodell zur Berechnung von Phasengleich-gewichtszuständen im Stoffsystem Ammoniak-Wasser. DKVTagungsber, 2, 183-196.

  14. 14. Zhao, E., Sugie, H. and Lu, B.C.Y. (1994) Calculation of Vapor-Liquid Equilibria and Saturated Liquid Volumes for Water-Ammonia Mixtures. Chemical Engineering Communications, 129, 99-108. https://doi.org/10.1080/00986449408936253

  15. 15. Vidal, J. (1983) Equations of State-Reworking the Old Forms. Fluid Phase Equilibria, 13, 15-33. https://doi.org/10.1016/0378-3812(83)80080-6

  16. 16. Gillespie, P.C., Wilding, W.V. and Wilson, G.M. (1987) Vapor-Liquid Equilibrium Measurements on the Ammonia-Water System from 313 K to 589 K. AICHE Symposium Series, 83, 97-127.

  17. 17. Thomsen, K. and Rasmussen, P. (1999) Thermodynamic Model for the Ammonia-Water System. Proceeding of 13th International Conference on the Properties of Water and Steam, Toronto, Canada.

  18. 18. Duan, Z., Møller, N. and Weare, J. (1996) Equation of State for the NH3-H2O System. Journal of Solution Chemistry, 25, 43-50. https://doi.org/10.1007/BF00972757

  19. 19. Harms-Watzenberg, F., Mes, S. and Korrelation, D. (1995) Thermodynamischen Eigensc haften von Wasser-Ammo- niak-Gemischen. VDI Fortschritt-Berichte, Series 3: Verfahrenstechnik, No. 380, VDI-Verlag.

  20. 20. Schulz, S.C.G. (1973) Equations of State for the System Ammonia-Water for Use with Computers. Proceedings of the 13th International Congress of Refrigeration, 431-436.

  21. 21. Rizvi, S.S.H. (1985) Measurement and Correlation of Ammonia-Water Equilibrium Data. University of Calgary, Calgary, Canada.

  22. 22. Tochigi, K., Kurihara, K., Satou, T. and Kojima, K. (1998) Prediction of Phase Equilibria for the Systems Containing Ammonia Using PRASOG. The Journal of Supercritical Fluids, 13, 61-67. https://doi.org/10.1016/S0896-8446(98)00036-9

  23. 23. Edwards, T.J., Newman, J. and Prausnitz, J.M. (1978) Thermodynamics of Vapor-Liquid Equilibria for the Ammonia-Water System. Industrial & Engineering Chemistry Fundamentals, 17, 264-269. https://doi.org/10.1021/i160068a007

  24. 24. Kouremenos, D.A. and Rogdakis, E.D. (1990) The Temperature-Entropy (or Enthalpy) and the Enthalpy-Entropy (Mollier) Diagram of the Kalina Cycle. Fundamentals of Thermodynamics and Exergy Analysis, 19, 13-19.

  25. 25. Ziegler, B. and Trepp, C. (1984) Equation of State for Ammonia-Water Mixtures. International Journal of Refrigeration, 7, 101-106. https://doi.org/10.1016/0140-7007(84)90022-7

  26. 26. Ibrahim, O.M. and Klein, S.A. (1993) Thermodynamic Properties of Ammonia-Water Mixtures. ASHRAE Transactions Symposia, 21, 1495-1502.

  27. 27. Xu, F. and Goswami, D.Y. (1999) Thermodynamic Properties of Ammonia-Water Mixtures for Power-Cycle Applications. Energy, 24, 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9

  28. 28. Stecco, S.S. and Desideri, U. (1989) Thermodynamic Analysis of the Kalina Cycles: Comparisons, Problems, Perspectives. ASME Paper, American Society of Mechanical Engineers GT, Paper No. 89-GT-149. https://doi.org/10.1115/89-GT-149

  29. 29. El-Sayed, Y. and Tribus, M. (1985) Thermodynamic Properties of Wa-ter-Ammonia Mixtures Theoretical Implementation for Use in Power Cycles Analysis. ASME Paper AES, American Society of Mechanical Engineers, 1, 89-95.

  30. 30. Rukes, B. and Dooley, R.B. (2001) Guideline on the IAPWS Formu-lation 2001 for the Thermodynamic Properties of Ammonia-Water Mixtures. IAPWS (The International Association for the Properties of Water and Steam), MD.

  31. 31. Jordan, D.P. (1997) Aqua-Ammonia Properties. Texas Tech University, Lubbock, TX.

  32. 32. Barhoumi, M., Snoussi, A., Ben, E.N., Mejbri, K. and Bellagi, A. (2004) Modélisation des données thermodynamiques du mélange ammoniac/eau. International Journal of Refrigeration, 27, 271-283. https://doi.org/10.1016/j.ijrefrig.2003.09.005

  33. 33. Mejbri, K. and Bellagi, A. (2006) Modelling of the Thermo-dynamic Properties of the Water-Ammonia Mixture by Three Different Approaches. International Journal of Refriger-ation, 29, 211-218. https://doi.org/10.1016/j.ijrefrig.2005.06.002

  34. 34. Amer, H.T., Michel, F. and Oliver, L. (2003) Thermodynamic Properties of Ammonia-Water Mixtures. International Congress of Refrigeration, WA.

  35. 35. Kalina, A., Tribus, M. and El-Sayed, Y. (1986) A Theoretical Approach to the Thermophysical Properties of Two-Miscible-Component Mixtures For the Purpose of Power-Cycle Analysis. ASME Paper, 86, 54.

  36. 36. Weber, L.A. (1999) Estimating the Virial Coef-ficients of the Ammonia + Water Mixture. Fluid Phase Equilibria, 162, 31-49. https://doi.org/10.1016/S0378-3812(99)00181-8

  37. 37. Park, Y.M. (1988) A Generalized Equation of State Ap-proach to the Thermodynamic Properties of Ammonia-Water Mixtures with Applications. University of Michigan, Ann Arbor, MI.

  38. 38. Ikegami, Y., Nishida, T., Uto, M., et al. (1992) Thermophysical Properties of Ammonia/Water by the BWR Equation of State. Proceeding of The Thirteenth Japan Symposium on Thermophysical Properties, 213-216.

  39. 39. Friend, D.G., Olson, A.L. and Nowarski, A. (1994) Standard Thermophysical Properties of the Ammo-nia-Water Binary Fluid. Proceedings of the 12th International Conference on the Properties of Water and Steam, Or-lando, FL.

  40. 40. Nowarski, A. and Friend, D.G. (1998) Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface. International Journal of Thermophysics, 19, 1133-1142. https://doi.org/10.1023/A:1022641709904

  41. 41. Abovsky, V. (1996) Thermodynamics of Ammonia Water Mixture. Fluid Phase Equilibria, 116, 170-176. https://doi.org/10.1016/0378-3812(95)02884-6

  42. 42. Enick, R.M., Mcllvried, H.G., Gale, T.K., et al. (1997) The Modeling of LEBS Kalina Power Cycles. Proceedings of Joint Power Generation Conference, ASME, New York, 55-67.

  43. 43. Rainwater, J.C. and Tillner-Roth, R. (1999) Critical Region Vapor-Liquid Equilibrium Model of Ammo-nia-Water. 13th International Conference on the Properties of Water and Steam, Toronto, Canada.

  44. 44. Tillner-Roth, R. and Friend, D.G. (1998) A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water + Ammonia}. Journal of Physical and Chemical Reference Data, 27, 63-96. https://doi.org/10.1063/1.556015

  45. 45. Pátek, J. and Klomfar, J. (1995) Simple Functions for Fast Calculations of Selected Thermodynamic Properties of the Ammonia-Water System. International Journal of Refrigeration, 18, 228-234. https://doi.org/10.1016/0140-7007(95)00006-W

  46. 46. Jain, P.C. and Gable, G.K. (1971) Equilibrium Property Data Equations for Aqua-Ammonia Mixtures. ASHRAE Transactions, 77, 149-151.

  47. 47. Mirolli, M. (2001) Commer-cialization of the Kalina Cycle for Power Generation and Its Potential Impact on CO2 Emissions. Exergy Inc., Hayward, CA.

  48. 48. 陈世玉, 陈亚平, 华君叶, 吴嘉峰. 基于PR 方程的氨水泡点参数计算软件编制[C]//第七届全国制冷空调新技术研讨会. 第七届全国制冷空调新技术研讨会论文集. 2012: 1-5.

  49. 49. 沈卫凯, 徐明海. Gibbs和Helmholtz函数法计算氨水热力性质对比[J]. 化工进展, 2011(S1): 618-621.

  50. 50. Lemmon, E.W., McLinden, M.O. and Huber, M.L. (2002) NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP Version7.0. National Institute of Standard Technology, Boulder, CO.

  51. 51. Thorin, E. (2000) Power Cycles with Ammonia-Water Mixtures as Working Fluid Analysis of Different Applications and the Influence of Thermophysical Properties. Royal Institute of Technology, Stockholm, Sweden.

  52. 52. Thorin, E., Dejfors, C. and Svedberg, G. (1998) Thermodynamic Properties of Ammonia-Water Mixtures for Power Cycles. International Journal of Thermophysics, 19, 501-510. https://doi.org/10.1023/A:1022525813769

  53. 53. Thorin, E. (2000) Comparison of Correlations for Predicting Thermodynamic Properties of Ammonia-Water Mixtures. International Journal of Thermophysics, 21, 853-870. https://doi.org/10.1023/A:1006658107014

  54. NOTES

    *通讯作者。

期刊菜单