International Journal of Psychiatry and Neurology
Vol.04 No.03(2015), Article ID:15951,6 pages
10.12677/IJPN.2015.43003

Research Progress of Serotonin in Autism Spectrum Disorders

Lili Wang, Lin Du, Ling Shan, Junyan Feng, Feiyong Jia*

Pediatric Neurology Rehabilitation Department, First Hospital of Jilin University, Changchun Jilin

Email: *erkekangfujia@163.com

Received: Aug. 5th, 2015; accepted: Aug. 24th, 2015; published: Aug. 27th, 2015

Copyright © 2015 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Autism spectrum disorder (ASD) is a group of developmental behavioral disorders which have the main features like different levels of social interaction and communication barriers, restrictive and repetitive behaviors and abnormal interests and activities. The onset of ASD shows a trend of increase year by year, but its etiology is unknown. Serotonin is a monoamine neurotransmitter which is widely present in the human body and has a regulatory role in other neuropsychiatric events. The study found that the 5-HT of patients with ASD level increased in peripheral blood and decreased in the brain. This anomaly was common in ASD patients. 5-HT transporter gene was different from ordinary people. Therefore, the abnormality of 5-HT system may be a risk factor for ASD.

Keywords:Autism Spectrum Disorder, 5-HT, 5-HTT

5-羟色胺在孤独症谱系障碍中的研究进展

王丽丽,杜琳,单玲,冯俊燕,贾飞勇*

吉林大学第一医院小儿神经康复科,吉林 长春

Email: *erkekangfujia@163.com

收稿日期:2015年8月5日;录用日期:2015年8月24日;发布日期:2015年8月27日

摘 要

孤独症谱系障碍(ASD)是一组以不同程度的社会交流、交往障碍和限制性、重复性行为、兴趣及活动异常为主要特征的发育行为障碍性疾病。ASD的发病率逐渐增加,但其病因不明。5-羟色胺(5-HT)是一种在人体中广泛存在的单胺类神经递质,对神经精神活动等具有一定的调节作用。研究发现,ASD患者的5-HT水平在外周血中升高,脑内降低,这种反常现象在ASD患者中较为常见。且5-HT转运体(5-HTT)基因异于常人。因此,5-HT系统的异常可能是影响ASD的一项危险因素。

关键词 :孤独症谱系障碍,5-HT,5-HTT

1. 引言

孤独症谱系障碍(Autism Spectrum Disorder, ASD)是一组以不同程度的社会交流、交往障碍和限制性、重复性行为、兴趣及活动异常为主要特征的发育行为障碍性疾病,严重影响患儿及其家庭的生活质量[1] 。5-羟色胺(5-HT)又名血清素,是一种在人体中广泛存在的单胺类神经递质,在体内具有广泛的生理功能,其合成部位不同,作用不同[2] -[5] 。研究报道5-HT在ASD患者中也起重要作用,现将该方面的研究进展综述如下。

2. 5-HT水平与ASD

2.1. 外周血5-HT水平与ASD

1961年Schain等[6] 最早发现ASD患者外周血中5-HT水平升高。随着相关研究的逐步深入,目前认为,这种5-HT水平升高现象,是一种与ASD有关的神经化学物质的特性,其与言语的交流、表达以及自伤行为[7] -[10] ,甚至与反社会行为都有着有一定的关系[11] ,对个人、家庭以及社会产生不良影响。Gabriele [9] 等查阅551篇5-HT水平与ASD的相关文献,从中筛选出符合要求的22篇文献进行Meta分析,结果显示:在外周血中,ASD组的5-HT水平显著高于正常组;在富血小板血浆中,ASD组的5-HT水平显著高于正常组;在贫血小板血浆中,两组5-HT水平无显著性差异。另外,Gabriele等建议将外周血中的高5-HT水平作为ASD患者的生物学标志。国内的相关研究[12] [13] 发现,在ASD患者的血浆中,5-HT水平升高,但其水平的高低与疾病的严重程度没有明显的关系。而在Mostafa等[14] 的研究发现,ASD临床症状越明显,也就是重度ASD患者的外周血中5-HT水平相对更高。因此,针对ASD患者,选择性5-HT再摄取抑制剂的应用受到广泛关注,且有研究报道[15] -[17] ,其可有效地改善ASD的行为症状。目前,5-HT介导的免疫调节已引起ASD研究人员的注意,以期对日后ASD患者的药物治疗提供新的途径[18] 。5-羟基吲哚乙酸是5-HT在醛脱氢酶的催化下生成的酸性代谢终产物。Mulder等 [19] 对10个血小板中5-HT水平正常的ASD患者和10个血小板中5-HT水平升高的ASD患者进行5-羟基吲哚乙酸的检测,发现5-HT水平较高的ASD患者的肠道中5-羟基吲哚乙酸水平较高,也就是5-HT合成量高。在ASD患者外周血中5-HT水平升高,但在其脑内5-HT水平降低,我们称这种现象为5-HT反常现象。

2.2. 脑内5-HT水平与ASD

5-HT是一个基本的神经传导信号,起源于大脑中缝核(中缝背核和正中缝) [20] [21] ,在大脑发育、大脑皮层分化以及神经元网络的形成过程中起着重要的作用 [22] [23] 。Nakamura等 [24] 分别对20名成人高功能ASD人群与20名年龄、智商无显著性差异的健康人群进行比较,得出在ASD组中额叶、颞叶、顶叶、枕叶裂片、边缘和皮质下区域的5-HT转运体蛋白的结合有明显减少的现象,提示ASD患者脑内5-HT转运体蛋白结合的减少是产生5-HT水平降低的主要原因,这为ASD的神经生理机制提供了可支撑的依据。另外,对ASD患者脑脊液测定发现其脑内5-HT水平降低[25] [26] 。但有临床报道,5-HT在脑内的合成呈不均衡分布。Chugani [26] 等用α-[11C]甲基-L-色氨酸作示踪剂,运用正电子发射断层扫描观察5-HT的合成,发现5名ASD患儿左侧额叶皮质、丘脑出现5-HT水平降低,右侧齿状核中5-HT水平升高。而另外2名患儿则在右侧额叶皮质、丘脑出现5-HT水平降低,左侧齿状核中5-HT水平升高。这些在大脑中异常的5-HT激活路径,对语言的产生以及感觉统合的形成都产生了重要的作用。类似5-HT分布不均衡的现象,在最新的一项动物实验中也得以体现,Viaggi [27] 等采用Engrailed 2 (EN2)敲除基因(En2-/-)小鼠作为研究对象,发现En2-/-小鼠具有与类ASD临床症状。分别对1个月、3个月、6个月大的En2-/-小鼠进行5-HT含量检测,发现在额叶和枕叶皮质区域,5-HT含量均降低,但在小脑皮质区域,1个月时5-HT含量虽降低,但在3个月之后5-HT含量明显升高。

3. 5-HT水平与动物模型

ASD的遗传异质性表明在神经网络系统中,他们内在的神经生物学与功能障碍具有一定的相关性,理解这些神经网络需要一个主要合作“伙伴”,即被大家验证和被广泛接受的动物模型。动物实验的研究可以帮助我们更好的理解疾病的进程和相关环境因素的影响[28] 。有研究报道,对脑内5-HT水平降低的小鼠进行行为学观察,发现其出现了类似人类ASD患者的社交障碍及行为异常[29] 。而此类母鼠对子鼠的关注有所减少[30] 。且有报道,脑内5-HT水平降低的小鼠攻击行为增加[31] -[33] 。Flood等[34] 对两种近交小鼠品系(C57BL/6和BALB/c)进行动物实验,对出现社交行为减少的ASD行为的BALB/c小鼠进行检测,发现中枢神经系统中5-HT合成降低,全血5-HT水平升高且在成年后全血中5-HT水平并没有降低,这与人类ASD患儿外周血中的高5-HT水平相一致。从细胞遗传学角度讲,人类染色体15q11-13异常是ASD患者中常见的细胞遗传学异常。Takumi [35] 等成功的将人类染色体15q11-13植入到小鼠体内,并培育出携带人类染色体15q11-13的子代小鼠,但只有父系复制小鼠显示出了ASD的行为特征,如社会交往障碍,刻板行为,对超声波发声表现出异常行为和焦虑,对产后1~3周具有社交障碍的小鼠进行5-HT水平的测定,其大脑区域内的5-HT水平降低。这个模型将ASD的治疗向遗传学方向迈出了重要的一步。

4. ASD与5-HT转运体(5-HTT)基因

5-HT转运体(5-hydroxytryptamine transporter, 5-HTT)是一种对5-HT有高度亲和力的跨膜转运蛋白,广泛存在于大脑边缘系统、胃肠道嗜铬细胞膜、肥大细胞和5-HT神经突触前膜上,具有调节和运输5-HT的功能,在5-HT释放后再摄取中起重要作用[36] [37] 。5-HTT功能与5-HTT基因多态性有关。目前,以5-HTT基因启动子区多态性(5-HTTLPR)研究较多,对5-HTT系统的功能有重要的调节作用[38] 。5-HTTLPR由5'启动子区44 bp的插入/缺失形成L型和S型两种等位基因。Campbell等[39] 认为遗传变异可以引起ASD,改变5-HT的信号传导与ASD的发生具有一定的相关性。Coutinho等[40] 研究ASD核心家庭中5-HT系统基因在遗传中的作用,对7种ASD候选基因(SLC6A4, HTR1A, HTR1D, HTR2A, HTR5A, TPH1和ITGB3)在186个核心家庭中进行分析,结果显示:SLC6A4和ITGB3基因对5-HT水平的产生有一定影响,为ASD患者血小板中高5-HT水平提供了一个遗传方面的证据。Kolevzon [41] 等对64名ASD患儿(均未服用影响5-HT水平及基因表达的药物)及健康儿童进行5-HTTLPR多态性与ASD的自伤行为相关性研究,发现有自伤行为的ASD患儿与5-HTTLPR中La等位基因数量增多,Lg等位基因数量减少。但在Li等[42] 的meta分析中发现5-HTTLPR的S等位基因与自杀行为有关。另有国内报道[43] ,S等位基因与广泛性焦虑障碍有关。虽结果不尽相同,但上述结果均能表示出5-HTTLPR与ASD的行为表现具有相关性。

总之,5-HT的遗传变异或异常传导通路导致的5-HT水平异常可能是引起ASD的病因,但5-HT是通过神经递质代谢和传递、神经网络、基因多态性等参与ASD的发生发展,还是有其他途径,二者是否互为因果,仍存在诸多疑问及矛盾,需进一步研究。另外,选择性5-HT再摄取抑制剂可有效改善ASD患者的行为症状,能否将外周血中高5-HT水平作为ASD的生物学标志,仍需扩大样本量进行深入研究。

文章引用

王丽丽,杜琳,单玲,冯俊燕,贾飞勇. 5-羟色胺在孤独症谱系障碍中的研究进展
Research Progress of Serotonin in Autism Spectrum Disorders[J]. 国际神经精神科学杂志, 2015, 04(03): 13-18. http://dx.doi.org/10.12677/IJPN.2015.43003

参考文献 (References)

  1. 1. 李洪华, 姜慧轶, 杜琳, 等 (2012) 儿童孤独症的早期筛查与诊断研究进展. 中国实验诊断学, 16, 2147-2150.

  2. 2. Mann, J.J. (1999) Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Archives of Internal Medicine, 21, 99S-105S. http://dx.doi.org/10.1016/S0893-133X(99)00040-8

  3. 3. Richards, J.B., Papaioannou, A., Adachi, J.D., et al. (2007) Effect of selective serotonin reuptake inhibitors on the risk of fracture. Archives of Internal Medicine, 167, 188-194. http://dx.doi.org/10.1001/archinte.167.2.188

  4. 4. Vestergaard, P., Rejnmark, L. and Mosekilde, L. (2008) Selective serotonin reuptake inhibitors and other antidepressants and risk of fracture. Calcified Tissue International, 82, 92-101. http://dx.doi.org/10.1007/s00223-007-9099-9

  5. 5. Munafo, M.R., Durrant, C., Lewis, G., et al. (2009) Gene X environment interactions at the serotonin transporter locus. Biological Psychiatry, 65, 211-219. http://dx.doi.org/10.1016/j.biopsych.2008.06.009

  6. 6. Schain, R.J. and Freedman, D.X. (1961) Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. Pediatrics, 58, 315-320. http://dx.doi.org/10.1016/S0022-3476(61)80261-8

  7. 7. Whitehouse, A.J., Holt, B.J., Serralha, M., Holt, P.G., Hart, P.H. and Kusel, M.M. (2013) Maternal vitamin D levels and the autism phenotype among offspring. Journal of Autism and Developmental Disorders, 43, 1495-1504. http://dx.doi.org/10.1007/s10803-012-1676-8

  8. 8. Reed, P. and McCarthy, J. (2012) Cross-modal attentions witching is impaired in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42, 947-953. http://dx.doi.org/10.1007/s10803-011-1324-8

  9. 9. Gabriele, S., Sacco, R. and Persico, A.M. (2014) Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. European Neuropsychopharmacology, 24, 919-929. http://dx.doi.org/10.1016/j.euroneuro.2014.02.004

  10. 10. Kolevzon, A., Newcorn, J.H., Kryzac, L., Watner, D., Chaplin, W., Smith, C.J., Hollander, E., Cook, E.H. and Silverman, J.M. (2010) The relationship between repetitive behaviors and whole blood serotonin in autism. Psychiatry Research, 175, 274-276. http://dx.doi.org/10.1016/j.psychres.2009.02.008

  11. 11. Moul, C., Dobson-Stone, C., Brennan, J., Hawes, D. and Dadds, M. (2013) An exploration of the serotonin system in antisocial boys with high levels of callous-unemotional traits. PLoS ONE, 8, e56619. http://dx.doi.org/10.1371/journal.pone.0056619

  12. 12. 李思特, 李雪荣, 张献共, 朱荣华, 罗学荣, 苏林雁, 等 (2003) 儿童孤独症血浆5–羟色胺的测定. 中国神经精神疾病杂志, 4, 279-281.

  13. 13. 焦公凯, 王伟勇, 张志珺, 方群, 邹冰, 王晨阳, 等 (2003) 儿童孤独症血浆5–羟色胺水平的对照研究. 临床精神医学杂志, 6, 334-335.

  14. 14. Mostafa, G.A. and Al-Ayadhi, L.Y. (2011) A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. Journal of Neuroinflammation, 8, 71. http://dx.doi.org/10.1186/1742-2094-8-71

  15. 15. Hubbard, A.L., McNealy, K., Scott-Van Zeeland, A.A., Callan, D.E., Bookheimer, S.Y. and Dapretto, M. (2012) Altered integration of speech and gesture in children with autism spectrum disorders. Brain and Behavior, 2, 606-619. http://dx.doi.org/10.1002/brb3.81

  16. 16. Chantiluke, K., Barrett, N., Giampietro, V., Santosh, P., Brammer, M., Simmons, A., Murphy, D.G. and Rubia, K. (2015) Inverse fluoxetine effects on inhibitory brain activation in non-comorbid boys with ADHD and with ASD. Psychopharmacology, 232, 2071-2082. http://dx.doi.org/10.1007/s00213-014-3837-2

  17. 17. Hollander, E., Soorya, L., Chaplin, W., Anagnostou, E., Taylor, B.P., Ferretti, C.J., Wasserman, S., Swanson, E. and Settipani, C. (2012) A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders. American Journal of Psychiatry, 169, 292-299. http://dx.doi.org/10.1176/appi.ajp.2011.10050764

  18. 18. Jaiswal, P., Mohanakumar, K.P. and Rajamma, U. (2015) Serotonin mediated immunoregulation and neural functions: Complicity in the aetiology of autism spectrum disorders. Neuroscience & Biobehavioral Reviews, 55, 413-431. http://dx.doi.org/10.1016/j.neubiorev.2015.05.013

  19. 19. Mulder, E.J., Anderson, G.M., Kemperman, R.F.J., Oosterloo-Duinkerken, A., Minderaa, R.B. and Kema, I.P. (2010) Urinary excretion of 5-hydroxyindoleacetic acid, serotonin and 6-sulphatoxymelatonin in normoserotonemic and hyperserotonemic autistic individuals. Neuropsychobiology, 61, 27-32. http://dx.doi.org/10.1159/000258640

  20. 20. Beliveau, V., Svarer, C., Frokjaer, V.G., Knudsen, G.M., Greve, D.N. and Fisher, P.M. (2015) Functional connectivity of the dorsal and median raphe nuclei at rest. Neuroimage, 116, 187-195. http://dx.doi.org/10.1016/j.neuroimage.2015.04.065

  21. 21. Witteveen, J.S., Middelman, A., van Hulten, J.A., Martens, G.J., Homberg, J.R. and Kolk, S.M. (2013) Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Frontiers in Cellular Neuroscience, 7, 143.

  22. 22. Bonnin, A. and Levitt, P. (2012) Placental source for 5-HT that tunes fetal brain development. Neuropsychobiology, 37, 299-300. http://dx.doi.org/10.1038/npp.2011.194

  23. 23. Migliarini, S., Pacini, G., Pelosi, B., Lunardi, G. and Pasqualetti, M. (2013) Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation. Molecular Psychiatry, 18, 1106-1118. http://dx.doi.org/10.1038/mp.2012.128

  24. 24. Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., et al. (2010) Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Archives of General Psychiatry, 67, 59-68. http://dx.doi.org/10.1001/archgenpsychiatry.2009.137

  25. 25. Adamsen, D., Ramaekers, V., Ho, H.T.B., Britschgi, C., Rüfenacht, V., Meili, D., et al. (2014) Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Molecular Autism, 5, 43. http://dx.doi.org/10.1186/2040-2392-5-43

  26. 26. Chugani, D.C., Muzik, O., Rothermel, R., Behen, M., Chakraborty, P., Mangner, T., et al. (1997) Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Annals of Neurology, 42, 666-669. http://dx.doi.org/10.1002/ana.410420420

  27. 27. Viaggi, C., Gerace, C., Pardini, C., Corsini, G.U. and Vaglini, F. (2015) Serotonin abnormalities in engrailed-2 knockout mice: New insight relevant for a model of autism spectrum disorder. Neurochemistry International, 87, 34-42. http://dx.doi.org/10.1016/j.neuint.2015.05.004

  28. 28. Mashael, A.G., Laila, A.A. and Afaf, E.A. (2014) Selected biomarkers as predictive tools in testing efficacy of melatonin and coenzyme Q on propionic acid-induced neurotoxicity in rodent model of autism. BMC Neuroscience, 25, 34.

  29. 29. Boylan, C.B., Blue, M.E. and Hohmann, C.F. (2007) Modeling early cortical serotonergic deficits in autism. Behavioural Brain Research, 176, 94-108. http://dx.doi.org/10.1016/j.bbr.2006.08.026

  30. 30. Angoa-Pérez, M., Kane, M.J., Sykes, C.E., Perrine, S.A., Church, M.W. and Kuhn, D.M. (2014) Brain serotonin determines maternal behavior and offspring survival. Genes, Brain and Behavior, 13, 579-591. http://dx.doi.org/10.1111/gbb.12159

  31. 31. Angoa-Pérez, M., Kane, M.J., Briggs, D.I., Sykes, C.E., Shah, M.M., Francescutti, D.M., Rosenberg, D.R., Thomas, D.M. and Kuhn, D.M. (2012) Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity. Journal of Neurochemistry, 121, 974-984. http://dx.doi.org/10.1111/j.1471-4159.2012.07739.x

  32. 32. Mosienko, V., Bert, B., Beis, D., Matthes, S., Fink, H., Bader, M. and Alenina, N. (2012) Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Translational Psychiatry, 29, e122. http://dx.doi.org/10.1038/tp.2012.44

  33. 33. Mosienko, V., Beis, D., Pasqualetti, M., Waider, J., Matthes, S., Qadri, F., Bader, M. and Alenina, N. (2015) Life without brain serotonin: Reevaluation of serotonin function with mice deficient in brain serotonin synthesis. Behavioural Brain Research, 277, 78-88. http://dx.doi.org/10.1016/j.bbr.2014.06.005

  34. 34. Flood, Z.C., Engel, D.L., Simon, C.C., Negherbon, K.R., Murphy, L.J., Tamavimok, W., Anderson, G.M. and Janušonis, S. (2012) Brain growth trajectories in mouse strains with central and peripheral serotonin differences: Relevance to autism models. Neuroscience, 17, 286-295. http://dx.doi.org/10.1016/j.neuroscience.2012.03.010

  35. 35. Takumi, T. (2010) A humanoid mouse model of autism. Brain and Development, 32, 753-758. http://dx.doi.org/10.1016/j.braindev.2010.05.001

  36. 36. 柳文华, 张兰 (2010) 五羟色胺转运体基因多态性与情感障碍关联研究. 精神医学杂志, 3, 224-227.

  37. 37. Caspi, A., Hariri, A.R., Holmes, A., Uher, R. and Moffitt, T.E. (2010) Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509-527. http://dx.doi.org/10.1176/appi.ajp.2010.09101452

  38. 38. 徐莉萍, 谢永标, 赵爱玲, 李雪荣 (2006) 品行障碍患者5–羟色胺转运体基因遗传多态性研究. 中国行为医学科学, 7, 588-590.

  39. 39. Campbell, N.G., Zhu, C.B., Lindler, K.M., Yaspan, B.L., Kistner-Griffin, E., Hewlett, W.A., et al. (2013) Rare coding variants of the adenosine A3 receptor are in-creased in autism: On the trail of the serotonin transporter regulome. Molecular Autism, 4, 28. http://dx.doi.org/10.1186/2040-2392-4-28

  40. 40. Coutinho, A.M., Sousa, I., Martins, M., Correia, C., Morgadinho, T., Bento, C., et al. (2007) Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Human Genetics, 121, 243-256. http://dx.doi.org/10.1007/s00439-006-0301-3

  41. 41. Kolevzon, A., Lim, T., Schmeidler, J., Martello, T., Cook Jr., E.H. and Silverman, J.M. (2014) Self-injury in autism spectrum disorder: An effect of serotonin transporter gene promoter variants. Psychiatry Research, 220, 987-990. http://dx.doi.org/10.1016/j.psychres.2014.09.018

  42. 42. Li, D. and He, L. (2007) Meta-analysis supports association between serotonin transporter (5-HTT) and suicidal behavior. Molecular Psychiatry, 12, 47-54. http://dx.doi.org/10.1038/sj.mp.4001890

  43. 43. 尤劲松, 胡随瑜, 张宏耕 (2003) 广泛性焦虑障碍与5–羟色胺转运体基因多态性的相关研究. 中华精神科杂志, 3, 132-134.

期刊菜单