﻿ 塔机螺栓连接有限元建模及动态载荷分析 Finite Element Modeling of Tower Bolt Connection and Dynamic Load Analysis

Mechanical Engineering and Technology
Vol.06 No.02(2017), Article ID:20909,7 pages
10.12677/MET.2017.62013

Finite Element Modeling of Tower Bolt Connection and Dynamic Load Analysis

Ye Zhang1, Shengchun Wang2

1School of Mechanical and Electrical Engineering, Shandong University of Architecture, Jinan Shandong

2Main lab of Mechanical Engineering Innovation Technology of Shandong Province, Jinan Shandong

Received: May 23rd, 2017; accepted: Jun. 2nd, 2017; published: Jun. 9th, 2017

ABSTRACT

Considering the thread Angle to establish the three-dimensional finite element model of bolt connection, using ABAQUS finite element analysis, with the method of direct load exerted preload, simulation of the bearing capacity of the threaded connection vice, and compared with Yamamoto analytic method is used for validation. Applying transverse dynamic loads, on the basis of dynamic loads is studied under the action of thread pair of different friction coefficient of the corresponding changes of the bearing capacity of screw thread.

Keywords:Screw Pairs, Analytical Method, Transverse Dynamic Loads, Friction Coefficient, Bearing Capacity

1山东建筑大学机电工程学院，山东 济南

2山东省高校机械工程创新技术重点实验室，山东 济南

1. 引言

2. 螺纹副的建模以及有限元分析

2.1. 螺纹联接副三维模型的建立

Pro/E是在国内产品设计领域占据重要位置，主要用于特征建模，因此，本文选用Pro/E来建立螺栓联接的三维有限元模型。

QTZ5510型塔式起重机标准节之间采用规格为M33 × 2高强度大六角螺栓与螺母。根据机械设计手册，计算所需三角形螺纹牙型的各参数值如表1所示。

2.2. 有限元分析的前处理

Table 1. Parameters of thread M33x2

Figure 1. Bolt, nut and the three-dimensional model after assembling

Table 2. Material and properties of bolt, nut and clampers

Figure 2. Grids of the three-dimensional finite element model of the bolt joint

2.3. 螺纹连接副的有限元分析及后处理

(1-1)

2.4. 螺栓联接有限元模型准确性的验证

Yamamoto法是一种广泛应用的计算螺纹副承载力分布的计算方法，该方法将螺纹牙视为平面应变梁，忽略螺纹升角，根据螺栓螺母体变形协调条件求出在预紧力的作用下螺纹牙根处受力的解析值，依据Yamamoto法 [7] ，螺纹牙的载荷分布可利用下式求得

(1-2)

3. 横向动态载荷下塔机螺栓连接中螺纹副摩擦系数的影响

Figure 3. The stress distribution of thread contacting sections

Figure 4. Bearing distributions of results and simulated results

Figure 5. Force curves reflecting the impact of friction coefficients of thread interfaces

(2-1)

Hess的研究结果也证明，比较大的摩擦系数会使得在拧紧过程中螺栓螺纹产生更大的弹性扭转变形，在外载的作用下弹性应变能将会释放，释放会导致螺栓产生较大的初始松动，即较大的螺纹接触面摩擦系数对螺栓松动的影响较大 [8] 。

4. 总结

1) 以M33 × 2三角形螺纹的螺栓螺母作为对象用Proe建立三维模型，用Hypermash进行了高质量网格分析，最后用Abaqus进行了分析计算。

2) 将建立的有限元模型所得到的螺纹副承载力与Yamamoto解析法计算得到的螺纹副承载力，进行了对比验证。

3) 在横向动态载荷这一工况下，将螺栓连接模型在不同的摩擦系数下受到的接触力进行了拟合分析，得出的时候预紧力下降最慢。

Finite Element Modeling of Tower Bolt Connection and Dynamic Load Analysis[J]. 机械工程与技术, 2017, 06(02): 91-97. http://dx.doi.org/10.12677/MET.2017.62013

1. 1. 侯世远, 廖日东. 螺纹联接松动过程的研究现状与发展趋势[J]. 强度与环境, 2014(2): 39-52.

2. 2. Junker, G.H. (1973) Criteria for Self-Loosening of Fasteners under Vibration. Aircraft Engineering & Aerospace Technology, 45, 314-335. https://doi.org/10.1108/eb034981

3. 3. Nassar, S.A. and Housari, B.A. (2006) Effect of Thread Pitch on the Self-Loosening of Threaded Fasteners Due to Cyclic Transverse Loads. ASME Journal of Pressure Vessel Technology, 128, 590-598. https://doi.org/10.1115/1.2349572

4. 4. Nassar, S.A. and Housari, B.A. (2007) Study of the Effect of Hole Clearance and Thread Fit on the Self-Loosening of Threaded Fasteners. Journal of Mechanical Design, 129, 1053-1062. https://doi.org/10.1115/1.2717227

5. 5. Schneiders, R. (1996) A Grid-Based Algorithm for the Generation of Hexahedral Element Meshes. Engineering with Computers, 12, 168-177. https://doi.org/10.1007/BF01198732

6. 6. Tekkaya, A.E. and Kavakli, S. (1995) 3-D Simulation of Metal-Forming Processes with Automatic Mesh Generation. Steel Research, 66, 377-383. https://doi.org/10.1002/srin.199501141

7. 7. 山本晃. 螺纹联接的理论与计算[M]. 上海: 上海科学技术文献出版社, 1984.

8. 8. Sanclemente, J.A. and Hess, D.P. (2007) Parametric Study of Threaded Fastener Loosening Due to Cyclic Transverse Loads. Engineering Failure Analysis, 14, 239-249.