Advances in Applied Mathematics
Vol. 09  No. 08 ( 2020 ), Article ID: 36869 , 9 pages
10.12677/AAM.2020.98131

The Generalized Inverse Computing Method of a Class of Block Matrixequations

Jinfeng Lai, Tangwei Liu, Amin Tang, Shuo Chen

East China University of Technology, Nanchang Jiangxi

Received: Jul. 15th, 2020; accepted: Jul. 28th, 2020; published: Aug. 4th, 2020

ABSTRACT

In this paper, the generalized inverse of a class of block matrix is discussed. By using the minus inverse of block matrix, the solution formula of a special matrix equation is given. Based on the properties of the minus inverse and the block matrix operation, the calculation process of the generalized inverse of a class of 2 × 2 block matrices is presented. And the method of solving the generalized inverse of a kind of block matrix by elementary transformation method is discussed. Then the method is applied to solving the equations. Finally, a numerical example is discussed, and the generalized inverse of 2 × 2 block matrix is extended to a special case of 4 × 4 block matrix.

Keywords:Partitioned Matrix, Generalized Inverse Matrix, Computing Method, Equations, Elementary Transformation

一类分块矩阵方程的广义逆求解方法

赖金凤,刘唐伟,唐阿敏,陈硕

东华理工大学,江西 南昌

收稿日期:2020年7月15日;录用日期:2020年7月28日;发布日期:2020年8月4日

摘 要

本文讨论了一类分块矩阵的广义逆,利用分块矩阵的减号逆,给出了一类特殊矩阵方程的求解公式。基于减号逆的性质,结合分块矩阵的运算,给出了一类2 × 2分块矩阵的广义逆的计算过程,探讨了利用初等变换法求解一类分块矩阵的广义逆的方法,并应用于方程组的求解。最后给出了数值计算例子,并将2 × 2分块矩阵的广义逆的计算方法推广应用到了一类特殊的4 × 4分块矩阵的情形。

关键词 :分块矩阵,广义逆矩阵,计算方法,方程组,初等变换

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在微分方程数值求解及优化问题求解中,经常会出现分块矩阵方程,广义逆矩阵在分块矩阵方程的求解中具有重要作用,分块矩阵的广义逆的求解具有重要意义 [1]。在已有研究中,很多学者对分块矩阵的一些广义逆给出了不同表达式 [2] [3]。但是,某些特殊块矩阵的广义逆仍然很难计算 [4]。本文探讨了2 × 2分块矩阵的广义逆的计算,推导了有效的计算公式,并应用于分块矩阵方程的求解,该方法能较大地降低矩阵方程求解的计算量。

2. 一类2 × 2分块矩阵的广义逆

2.1. 逆矩阵的基本概念

块矩阵 [5] 的逆矩阵有多种,例如减号逆,加号逆 [6],最小二乘广义逆 [7],自反广义逆和最小范数广义逆 [8]。在本文中,我们考虑四分块矩阵的减号逆 [9]。

对于矩阵 A F m × n ,我们考虑以下公式:

A X A = A , A F m × n (1)

对于一个 m × n 的矩阵A,如果存在一个矩阵X满足(1),那么矩阵X称为A矩阵的减号逆 A 1 ,对任意的 A F m × n A 1 存在。

2.2. 2 × 2分块矩阵减号逆

在求解如下离散方程组(2)时 [10],会涉及到分块矩阵的求逆问题 [11]

(2)

我们考虑以下 2 × 2 块矩阵的广义逆,设系数矩阵T为

T = [ A C T C B ] (3)

设矩阵T减号逆为

[ X 1 X 2 X 3 X 4 ]

方程(2)中U,P未知,系数矩阵T和右端项F已知,有

{ A U C T P = 0 , C U B P = F . (4)

根据减号逆的性质有

[ A C T C B ] [ X 1 X 2 X 3 X 4 ] [ A C T C B ] = [ A C T C B ] ,

从而

{ A X 1 A + A X 2 C + C T X 3 A + C T X 4 C = A , A X 1 C T + A X 2 B + C T X 3 C T + C T X 4 B = C T , C X 1 A + C X 2 C + B X 3 A + B X 4 C = C , C X 1 C T + C X 2 B + B X 3 C T + B X 4 B = B . (5)

在(5)中的第1、3个等式左右同乘以U,第2、4个等式左右同乘以P有

{ A X 1 A U + A X 2 C U + C T X 3 A U + C T X 4 C U = A U , A X 1 C T P + A X 2 B P + C T X 3 C T P + C T X 4 B P = C T P , C X 1 A U + C X 2 C U + B X 3 A U + B X 4 C U = C U , C X 1 C T P + C X 2 B P + B X 3 C T P + B X 4 B P = B P . (6)

因为 A U C T P = 0 C U B P = F ,可得

{ A X 1 C T P + A X 2 C U + C T X 3 C T P + C T X 4 C U = A U , A X 1 C T P + A X 2 B P + C T X 3 C T P + C T X 4 B P = C T P , C X 1 C T P + C X 2 C U + B X 3 C T P + B X 4 C U = C U , C X 1 C T P + C X 2 B P + B X 3 C T P + B X 4 B P = B P . (7)

在(7)中第一个等式减去第二个等式,第三个等式减去第四个等式得

{ A X 2 F + C T X 4 F = 0 , C X 2 F + B X 4 F = 0. (8)

化成矩阵形式得

( A C T 0 0 0 0 C B ) [ X 2 0 0 0 0 X 4 0 0 0 0 X 2 0 0 0 0 X 4 ] [ F 0 F 0 0 F 0 F ] = [ 0 0 0 F ] (9)

下面讨论 ( A C T 0 0 0 0 C B ) 的求解:

A C p × m C C q × m ,形如 ( A C T ) 的矩阵叫做列分块矩阵,以下讨论列分块矩阵的减号逆。

对矩阵 ( A C T ) 作初等变换 [7] 有

( A E m ) ( A C T ) ( E p A C T 0 E q ) = ( A A A ( E n A A ) C T A ( E n A A ) C T ) , (10)

D 1 = ( E n A A ) C T H = ( A A A ( E n A A ) C T A ( E n A A ) C T )

A A D 1 = D 1 = A A ( E n A A ) C T = ( A A A A A A ) C T = ( A A A A ) C T = 0

X = ( E 0 D 1 A D 1 ) ,有

H X H = ( A A A ( E n A A ) C T A ( E n A A ) C T ) ( E 0 D 1 A D 1 ) ( A A A ( E n A A ) C T A ( E n A A ) C T ) = ( A A A D 1 A D 1 ) ( E 0 D 1 A D 1 ) ( A A A D 1 A D 1 ) = ( ( A A A D 1 D 1 A ) A A + A D 1 D 1 A ( A A A D 1 D 1 A ) A D 1 + A D 1 D 1 D 1 ( A D 1 D 1 A ) A A + D 1 D 1 A ( A D 1 D 1 A ) A D 1 + D 1 D 1 D 1 ) = ( A A A D 1 A D 1 ) = H

( A E m ) 为列满秩阵, ( E p A C T 0 E q ) 为可逆阵。

又有

( A C T ) ( E p A C T 0 E q ) X ( A E m ) ( A C T ) = ( A C T ) , (11)

所以有

( A C T ) = ( E p A C T 0 E q ) X ( A E m ) = ( A A C T D 1 ( E m A A ) D 1 ( E m A A ) ) .(12)

同理有

( C B ) = ( C C B D 2 ( E m C C ) D 2 ( E m C C ) ) , (13)

其中 D 1 = ( E n A A ) C T D 2 = ( E n C C ) B

然后有

[ A C T 0 0 0 0 C B ] = [ ( A C T ) 0 0 ( C B ) ]

[ A C T 0 0 0 0 C B ] = [ ( A A C T D 1 ( E m A A ) D 1 ( E m A A ) ) 0 0 ( C C B D 2 ( E m C C ) D 2 ( E m C C ) ) ]

同理得

[ F 0 F 0 0 F 0 F ] = [ [ F F ] 0 0 [ F F ] ] = [ [ F 0 ] 0 0 [ F 0 ] ] . (14)

因此有

[ X 2 0 0 0 0 X 4 0 0 0 0 X 2 0 0 0 0 X 4 ] = ( A C T 0 0 0 0 C B ) [ 0 0 0 F ] [ F 0 F 0 0 F 0 F ] = [ ( A A C T D 1 ( E m A A ) D 1 ( E m A A ) ) 0 0 ( C C B D 2 ( E m C C ) D 2 ( E m C C ) ) ] [ 0 0 0 F ] [ [ F 0 ] 0 0 [ F 0 ] ]

X 2 = ( C C B D 2 ( E m C C ) ) F F X 4 = ( D 2 ( E m C C ) ) F F

然后有

[ A C T 0 0 0 0 0 0 0 0 A C T 0 0 0 0 0 0 0 0 C B 0 0 0 0 0 0 0 0 C B ] [ X 1 0 0 0 0 0 0 0 0 X 3 0 0 0 0 0 0 0 0 X 1 0 0 0 0 0 0 0 0 X 3 0 0 0 0 0 0 0 0 X 1 0 0 0 0 0 0 0 0 X 3 0 0 0 0 0 0 0 0 X 1 0 0 0 0 0 0 0 0 X 3 ] [ A 0 0 0 A 0 0 0 0 C T 0 0 0 C T 0 0 0 0 A 0 0 0 A 0 0 0 0 C T 0 0 0 C T ] = [ 0 0 0 0 0 0 0 0 0 0 ( C C B D 2 ( E m C C ) ) F F 0 0 0 0 D 2 ( E m C C ) F F ] = [ A A X 2 C C T X 4 C 0 0 0 0 C T A X 2 B C T X 4 B 0 0 0 0 C C X 2 C B X 4 C 0 0 0 0 B C X 2 B B X 4 B ] .(15)

用同样的方法有

[ X 1 0 0 X 3 ] = [ A C T ] ( A A X 2 C C T X 4 C ) [ A A ] = ( A A C T D 1 ( E m A A ) D 1 ( E m A A ) ) ( A A X 2 C C T X 4 C ) [ A 0 ] = [ ( A A C T D 1 ( E m A A ) ) ( A A X 2 C C T X 4 C ) A 0 ( D 1 ( E m A A ) ) ( A A X 2 C C T X 4 C ) A 0 ] (16)

然后设

X 1 = ( A A C T D 1 ( E m A A ) ) ( A A X 2 C C T X 4 C ) A = M ( A A ( C C B D 2 ( E m C C ) ) F F C C T ( D 2 ( E m C C ) ) F F C ) A (17)

X 3 = 0 ,

其中 M = ( A A C T D 1 ( E m A A ) )

因此,有以下公式

[ A C T C B ] = [ X 1 X 2 X 3 X 4 ] = [ X 1 ( C C B D 2 ( E m C C ) ) F F 0 ( D 2 ( E m C C ) ) F F ] (18)

其中

X 1 = ( A A C T D 1 ( E m A A ) ) ( A A ( C C B D 2 ( E m C C ) ) F F C C T ( D 2 ( E m C C ) ) F F C ) A

D 1 = ( E n A A ) C T , D 2 = ( E n C C ) B ,

从而可得

[ U P ] = [ A C T C B ] [ 0 F ]

2.3. 初等变换法 [12]

对于任意一个分块矩阵A,它的减号逆总存在,不一定唯一,并且

A = { A T ( A A T ) 1 R ( A ) = m ; ( A A T ) 1 A T , R ( A ) = n ; C T ( C C T ) ( D D 1 ) D T , A = D C A .

是A的一个减号逆。设A是 m × n 矩阵, R ( A ) = r ,则存在可逆的m阶方阵P和n阶方阵Q,使

A = P [ E r 0 0 0 ] Q ,即 P 1 A Q 1 = [ E r 0 0 0 ] = D ,令 P 1 = P l P 1 , Q 1 = Q 1 Q S , P i Q j ( i = 1 , , l ; j = 1 , , s ) 都是初等矩阵。则有

P 1 A Q 1 = P l P 1 T Q 1 Q s = [ E r 0 0 0 ] ,

P 1 = P l P 1 = P l P E m , Q 1 = Q 1 Q s = E n Q 1 Q s .

这一过程可对下面分块矩阵施行初等变换完成

[ T m × n E m E n 0 ] [ P 1 T m × n P 1 E n 0 ] [ P 1 T m × n Q 1 P 1 Q 1 0 ] = [ [ E r 0 0 0 ] P 1 Q 1 0 ]

因此 A = Q 1 D T P 1 G = Q 1 [ E r C D I ] P 1 是A的全部广义逆,其中C,D,I分别为任意的 r × ( m r ) ( n r ) × r ( n r ) × ( m r ) 矩阵。

3. 数值例子

A = [ 1 3 2 6 ] C = [ 1 2 2 4 ] B = [ 3 1 1 5 ] F = [ 2 3 ] 时,求方程组 [ A C T C B ] [ U P ] = [ 0 F ]

解:系数矩阵

T = [ A C T C B ] = [ 1 3 1 2 2 6 2 4 1 2 3 1 2 4 1 5 ] , b = [ 0 0 2 3 ] ,

利用初等变换理论做分块矩阵的初等变换

[ T E 4 E 4 0 ] [ 1 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 1 0 1 / 5 2 / 5 0 0 1 0 0 0 2 / 5 1 / 5 1 3 1 16 / 5 0 0 0 0 0 1 0 1 / 5 0 0 0 0 0 0 1 3 / 5 0 0 0 0 0 0 0 1 0 0 0 0 ] [ D P 1 Q 1 0 ]

满足关系式 P 1 T Q 1 = D ,因此可以求出T的一个减号逆为

T = Q 1 D T P 1 = [ 2 0 0.2 1.4 1 0 0.2 0.4 0 0 0.4 0.2 0 0 0 0 ] ,

再求原方程的通解

[ U P ] = T b + ( E A A ) ξ = [ 4.6 1.6 0.2 0 ] + k 4 [ 3.2 0.2 0.6 1 ] ,

其中 k 4 为任意实数, ξ = ( k 1 , k 2 , k 3 , k 4 ) T

验证:由于广义逆是不唯一的,利用matlab直接计算,得到方程一个解

[ U P ] = [ A C T C B ] [ 0 F ] = [ 0.4983 1.3436 0.9691 1.2818 ]

k 4 = 1 .128 [ U P ] = T b + ( E A A ) ξ = [ 4.6 1.6 0.2 0 ] + 1 . 128 [ 3.2 0.2 0.6 1 ] = [ 0.4983 1.3436 0.9691 1.2818 ] ,说明该方法有效。

4. 2 × 2分块矩阵求解的推广

已知矩阵方程 [12]

[ A 1 0 0 0 0 A 2 C 1 0 0 C 1 B 1 0 0 0 0 B 2 ] [ U 1 U 2 P 1 P 2 ] = [ 0 0 F 1 F 2 ] (20)

其中系数矩阵 T = [ A 1 0 0 0 0 A 2 C 1 0 0 C 1 B 1 0 0 0 0 B 2 ] 已知,下面求解T的广义逆。

A = [ A 1 0 0 A 2 ] , B = [ B 1 0 0 B 2 ] , C = [ 0 C 1 0 0 ] , F = [ F 1 F 2 ]

A = [ A 1 0 0 A 2 ] , B = [ B 1 0 0 B 2 ] , C = [ 0 C 1 0 0 ]

D 1 = ( E A A ) C T = [ 0 0 C 1 A 2 A 2 C 1 0 ] , D 2 = ( E n C C ) B = [ B 1 0 0 B 2 ] ,

D 1 = [ 0 0 C 1 C 1 A 2 A 2 0 ] , D 2 = [ B 1 0 0 B 2 ] .

F = [ F 1 F 2 ] = ( [ F 1 T F 2 T ] T ) = [ F 1 F 1 F 2 P ( E F 1 F 1 ) P ( E F 1 F 1 ) ]

其中 P = ( E F 1 F 1 ) F 2 P = F 2 F 2 F 1 F 1

[ A 1 0 0 0 0 A 2 C 1 0 0 C 1 B 1 0 0 0 0 B 2 ] = [ X 1 X 2 X 3 X 4 ]

代入公式(19)可得

X 1 = [ A 1 A 1 C 1 C 1 ( E A 2 A 2 ) ( E A 1 A 1 ) T 3 A 1 0 0 A 2 A 2 C 1 B 1 F 1 T 1 C 1 A 2 ]

X 2 = [ C 1 ( E B 2 B 2 ) F 2 ( F 1 F 1 F 2 P ( E F 1 F 1 ) ) C 1 ( E B 2 B 2 ) F 2 ( P ( E F 1 F 1 ) ) 0 0 ]

X 3 = 0

X 4 = [ B 1 F 1 ( F 1 F 1 F 2 P ( E F 1 F 1 ) ) B 1 F 1 ( P ( E F 1 F 1 ) ) B 2 F 2 ( F 1 F 1 F 2 P ( E F 1 F 1 ) ) B 2 F 2 ( P ( E F 1 F 1 ) ) ]

其中 T 3 = A 1 C 1 + C 1 B 2 B 2 F 2 T 1 C 1 T 1 = F 1 F 1 F 2 P ( E F 1 F 1 )

5. 结论

通过分块矩阵的广义逆探讨矩阵方程的求解,也是代数方程求解的探索方向之一。在本文中,探讨了一类 2 × 2 分块矩阵的广义逆的具体计算过程,应用初等变换法求解一类分块矩阵的广义逆,给出了数值计算例子,应用于一些特殊方程的求解,并对 2 × 2 分块矩阵的广义逆的计算进行了推广与应用。

基金项目

江西省教育厅科技项目(项目号:GJJ160557)。

文章引用

赖金凤,刘唐伟,唐阿敏,陈 硕. 一类分块矩阵方程的广义逆求解方法
The Generalized Inverse Computing Method of a Class of Block Matrixequations[J]. 应用数学进展, 2020, 09(08): 1115-1123. https://doi.org/10.12677/AAM.2020.98131

参考文献

  1. 1. 于子倩. 分块矩阵的应用研究[J]. 应用数学进展, 2020, 9(6): 980-985.

  2. 2. Tian, Y.G. and Takane, Y. (2009) More on Generalized Inverse of Partitioned Matrices with Banachicwicz-Schur Forms. Linear Algebra and Its Applications, 430, 1641-1655. https://doi.org/10.1016/j.laa.2008.06.007

  3. 3. Zhang, L.P. and Yu, H.B. (2008) The Expression and Calculation of Generalized Inverse Matrix. Journal of Xichang College (Natural Science Edition), 22, 39-42.

  4. 4. Yan, Z.Z. (2012) New Representations of the Moore-Penrose Inverse of 2×2 Block Matrices. Linear Algebra and Its Applications, 456, 3-15. https://doi.org/10.1016/j.laa.2012.08.014

  5. 5. 董李娜, 常晓鹏. 分块矩阵广义初等变换的应用[J]. 河南教育学院学报(自然科学版), 2018, 27(4): 58-61.

  6. 6. 张大克, 王玉杰. 矩阵的加号逆理论在参数估计中的应用[J]. 生物数学学报, 1996(1): 38-41+49.

  7. 7. 张亚飞, 韩凯歌, 沈艳. 最小二乘广义逆求解方法研究及应用[J]. 应用科技, 2014, 41(3): 60-63.

  8. 8. 李莹, 吕志超, 查秀秀, 王方圆. 矩阵的特殊结构最小范数广义逆[J]. 四川师范大学学报(自然科学版), 2015, 38(5): 678-681.

  9. 9. 高珍珍. 广义逆矩阵及其应用[J]. 伊犁师范学院学报(自然科学版), 2011(4): 1-7.

  10. 10. Liu, T.W., Xu, H.H., Qiu, X.L., Zhang, W. and Shi, X.B. (2013) A Hybrid Laplace Transform Mixed Multiscale Finite-Element Method for Flow Model in Porous Media. Journal of Information and Computational Science, 10, 4773-4781. https://doi.org/10.12733/jics20102312

  11. 11. 欧阳光. 广义逆矩阵及其计算方法[J]. 湘南学院学报, 2020, 41(2): 1-4.

  12. 12. 陈惠汝. Moore-Penrose广义逆矩阵A-,Am-与线性方程组的解[J]. 西南师范大学学报(自然科学版), 2015, 40(5): 30-33.

期刊菜单