﻿ 高速列车受电弓平台的优化设计 Optimal Design of Pantograph Platform for High-Speed Trains

International Journal of Mechanics Research
Vol.07 No.02(2018), Article ID:25347,9 pages
10.12677/IJM.2018.72004

Optimal Design of Pantograph Platform for High-Speed Trains

Peng Lin1, Ye Zhang1,2, Dilong Guo2*

1National Engineering Research Center, CRRC Qingdao SiFang Co., LTD., Qingdao Shandong

2Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Science, Beijing

Received: May 22nd, 2018; accepted: Jun. 4th, 2018; published: Jun. 11th, 2018

ABSTRACT

In order to study the aerodynamic impact of pantograph platform on the pantograph system, six different pantograph platforms were designed, and the flow characteristics and aerodynamic drag characteristic of pantograph system were studied by IDDES (improved delayed detached eddy simulation) in computational dynamics. The results show that there is a strong vortex in the pantograph region, the external type of pantograph platform causes increase of the aerodynamic force of the pantograph system; under the condition that the sinking height is determined, the topology of the sinking platform has little influence on the aerodynamic forces of the pantograph system. The research results provide the basis for the selection and design of the pantograph platform for high-speed trains.

Keywords:High-Speed Train, Pantograph Platform, Sinking-Type, Aerodynamic Force

1中车青岛四方机车车辆股份有限公司，国家工程研究中心，山东 青岛

2中国科学院力学研究所，流固耦合系统力学重点实验室学院，北京

1. 引言

2. 受电弓平台的模型及拓扑

3. 网格划分及计算方法

(1) Model-1五边形 (2) Model-2外置式 (3) Model-3椭圆形 (4) Model-4梯形 (5) Model-5水滴形 (6) Model-6矩形

Figure 1. Six kinds of different pantograph platforms design

Figure 2. The sketch of the calculation model of the pantograph platform

4. 计算方法的验证

(a) 对称面网格 (b) 图计算域示意图 (c) 升弓区域网格局部图 (d) 降弓区域局部图

Figure 3. Six kinds of different pantograph platforms design

(a) 风洞试验图 (b) 风洞试验计算网格图

Figure 4. Tunnel experiment model and its mesh

Figure 5. Measuring points of the tunnel model

Figure 6. The comparison of computational data and the wind tunnel test

5. 计算结果及分析

5.1. 受电弓区域的流动特性

(a) 五边形平台区域的流线图 (b) 外置式平台区域的流线图 (c) 椭圆形平台区域的流线图 (d) 梯形平台区域的流线图 (e) 水滴形平台区域的流线 (f) 矩形平台区域的流线图

Figure 7. The streamline distribution of the six kinds of pantograph platform

5.2. 受电弓区域的压力分布特性

(a) 五边形平台区域的压力分布云图 (b) 外置式平台区域的压力分布云图 (c) 椭圆形平台区域的压力分布云图 (d) 梯形平台区域的压力分布云图 (e) 水滴形平台区域的压力分布云图 (f) 矩形平台区域的压力分布云图

Figure 8. The contours of Surface pressure distribution of the six kinds of pantograph platform

5.3. 不同受电弓区平台的气动力

${C}_{d}=\frac{{F}_{x}}{\frac{1}{2}\rho {V}^{2}S}$

Table 1. Drag coefficient of pantograph system and the whole train

Figure 9. The drag coefficient of pantograph system of different pantograph platform

Figure 10. The drag coefficient of the whole train of different pantograph platform

6. 结论

1) 外置式受电弓平台导致气流直接冲击到受电弓装置，凹腔形式平台能有效缓解气流对受电弓的冲击，但会在凹腔内部形成强烈的漩涡，同时在凹腔的后缘形成高压区，在前缘形成低压区。

2) 凹腔形式的受电弓平台能有效的减小整个受电弓系统的气动阻力，凹腔的拓扑结构对于整个受电弓系统的气动阻力影响很小。

Optimal Design of Pantograph Platform for High-Speed Trains[J]. 力学研究, 2018, 07(02): 27-35. https://doi.org/10.12677/IJM.2018.72004

1. 1. 伊藤顺一. 改善空气动力学性能, 实现新干线的高速[J]. 国外铁道车辆, 2002, 39(5): 9-12.

2. 2. 沈志云. 关于高速铁路及高速列车的研究[J]. 振动、测试与诊断, 1998, 18(1): 1-7.

3. 3. 田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007,

4. 4. 许平, 田红旗, 姚曙光. 流线型列车头部结构设计方法[J]. 中国铁道科学, 2006, 27(1): 79-82.

5. 5. Schetz, J.A. (2001) Aerodynamics of High-Speed Trains. Annual Review of Fluid Mechanics, 33, 371-414. https://doi.org/10.1146/annurev.fluid.33.1.371

6. 6. Raghuathan, S., Kim, H.D. and Setoguchi, T. (2002) Aerodynamics of High-Speed Railway Train. Progress in Aerospace Sciences, 38, 469-514. https://doi.org/10.1016/S0376-0421(02)00029-5

7. 7. 张雪. 基于空气动力学的高速受电弓研究[M]. 成都: 西南交通大学, 2015.

8. 8. 郭迪龙, 姚拴宝, 刘晨辉, 杨国伟. 高速列车受电弓非定常气动特性研究[J]. 铁道学报, 2012, 34(11): 16-21.

9. 9. 王洪娇. 高速列车受电弓的气动力学特性[M]. 成都: 西南交通大学, 2015

10. 10. 姚拴宝, 郭迪龙, 杨国伟, 李明高. 高速列车气动阻力分布特性研究[J]. 2012, 34(7): 18-23.