﻿ 新引力宇宙度规在星系光度和星系团的验证 Validation of New Gravity Universal Metric in Galaxy Luminosity and Galaxy Groups and Clusters

Astronomy and Astrophysics
Vol.04 No.04(2016), Article ID:18733,12 pages
10.12677/AAS.2016.44008

Validation of New Gravity Universal Metric in Galaxy Luminosity and Galaxy Groups and Clusters

Xun Huang*

Ningjiang Middle School in Xingning, Xingning Guangdong

Received: Sep. 26th, 2016; accepted: Oct. 11th, 2016; published: Oct. 18th, 2016

ABSTRACT

With the new cosmic gravity metric, the author gets the new equation of the new luminosity and the luminosity distance to draw the luminosity distance diagram of all the redshifts, which is a line cluster with slope = 0.5. Every luminosity can be shown accurately in this diagram. Point coordinates of luminosity’s diagram (L-L) gather on both sides of diagonal closely and regularly. All the redshifts can be drawn into diagram. There isn’t any diagram like this in standard cosmology. Through calculation and analysis, we can learn that galaxy groups and clusters of high redshift should be the Great Wall of galaxies. All physical quantities in the galaxy are influenced by basically well-distributed gravity effect in the universe and it increases as the redshift’s value increases. In the following discussion, there is only one cosmic horizon constant and all the physical quantities observed on the galaxy with all redshifts can be analyzed without dark energy.

Keywords:Infrared Flux Density, Universal Horizon, Luminosity Diagram, Galaxy Groups and Clusters

1. 引言

2. 新引力宇宙度规红外通量密度S3.6µm的光度计算

(1)

(2)

Table 1. The first three columns are the original data of Table (1), and the fourth column is the calculated value of Equation (2a). The value of the third column is smaller than that of the fourth column

(2a)

(3)

Table 2. The first three columns are the original data of Table (2), and the fourth column is the calculated value of Equation (2a). The value of the third column is larger than that of the fourth column

(GІ∙y = 109光年，Mpc = 106秒差距) (文献 [1] (p. 69)书中称为理论值，经验证置信度高，但不精确)。近似于哈勃年龄年。下面表中(值为)。

3. 星系红移与红外光度图的讨论

4. 红移Z > 0.01星系团的新分析

(4)

(5)

Table 3. New luminosity distance and luminosity can be calculated by redshift and apparent magnitude of members of galaxy groups and clusters (MSO461.6−0305)

Continued

ID3625为远亮比ID3635为近暗；ID3625点坐标离横轴高靠右，ID3635点坐标离横轴低靠左。这3个点坐标在dzL图精确表出，是dzL图中普遍情况，是必知基础。

。(6)

5. 讨论与小结

① 上面较详介绍红外距离光度dzL图结构，简介光度(L－L)图，这2个图都是新引力宇宙度规理论分析结果之一，每一个电磁波段观测值，通量或辐射流量，红移Z都是被宇宙基本均匀的稀薄物质的极弱引力效应控制，所以对前述图用理论分析其结构，没有给出图，可以了解点坐标的精确分布规律，没有暗能量参与分析。② 表1表2的制表者和文献 [2] [3] 作者没有上述的前沿性重要内容。文献 [2] 的红外光度(L－L)FalR图点坐标是无规律松散分布，原因是所用的光度距离不准确。其余的图都是唯象图。dzLFalR图他们无法绘出。最新文献 [2] [4] [7] 红外作者为什么不绘出全部观测的红移？此处dzL图、ZL图和(L－L)图表出全部观测的红移，正是优于文献 [2] [4] [7] 情况。③ 红移定值通量非定值，反之通量定值红移非定值；红移值小大(近远)，对应通量值大小，计算出的光度对应大小(亮暗)变化，可以由理论分析清楚，这3个最基础光度图分布问题和理论分析，影响整体分布规律，关键通量密度定值，红移Z非定值时标准宇宙学无法处理恰当，是当代文献重大缺点之一。④ 此处方程绘(Z,)图，或(,)图，是全红移光滑曲线；而ZL图，dzL图，(L－L)图也是全红移曲线簇。前者只有1个红移变量；后ZL图，dzL图有2个变量红移和通量(或辐射流量)；(L－L)图变量有1个红移和2个通量(或辐射流量)。是纯广义相对论在星系红移光度普适理论最佳应用分析！附录1给出文献 [4] 的4个截图，供上面讨论结果比较。⑤经对高红移星系团成员星系(文献 [6] 中的2个表)计算分析知，高红移星系团是星系长城局域，可称为星系纤维局域柱吗？！是真实存在的宇宙普遍现象，文献中还未发现的新现象。很多壮观的引力光弧正是星系长城局域作用产生的！以上内容本专业普通大三以上，学习认真者都能读懂，通俗易懂！

Validation of New Gravity Universal Metric in Galaxy Luminosity and Galaxy Groups and Clusters[J]. 天文与天体物理, 2016, 04(04): 69-80. http://dx.doi.org/10.12677/AAS.2016.44008

1. 1. 何香涛. 观测宇宙学[M]. 第二版, 北京: 北京师范大学出版社, 2007: 69.

2. 2. Rowan-Robinson, M., Babbedge, T., Oliver, S., et al. (2008) Photometric Redshifts in the SWIRE Survey. MNRAS, 386, 697-714. http://dx.doi.org/10.1111/j.1365-2966.2008.13109.x

3. 3. Rowan-Robinson, M., Gonzalez-Solares, E., Vaccari, M. and Marchetti, L. (2013) Revised SWIRE Photometric Redshifts. MNRAS, 428, 1959. http://lanl.arxiv.org/abs/1210.3471v1

4. 4. Marchetti, L., Vaccari, M., Franceschini, A., et al. (2015) The HerMES Submillimetre Local and Low-Redshift Luminosity Functions. MNRAS, 456, 1999-2023. http://lanl.arxiv.org/abs/1511.06167v1 http://dx.doi.org/10.1093/mnras/stv2717

5. 5. Binney, J. and Merrifield, M., 著. 星系天文学[M]. 赵刚, 陈玉琴, 等, 译. 北亰: 中国科学技术出版社, 2004: 46, 423.

6. 6. Inger, J. and Chiboucas, K. (2013) Stellar Populations and Evolution of Early-type Cluster Galaxies: Constraints Fromoptical Imagingand Spectroscopyof z=0.5-0.9 Galaxy Clusters. Astronomical Journal, 145, Article ID: 77. http://lanl.arxiv.org/abs/1301.3177v1

7. 7. Symeonidis, M., Vaccari, M., Berta, S., Page, M.J., et al. (2013) The Herschel Census of Infrared SEDs through Cosmic Time. Oxford Journals Science & Mathematics MNRAS, 431, 2317-2340. http://lanl.arxiv.org/abs/1302.4895v1

Figure 1. Only diagram of Z < 1 can be drawn according to the two diagrams and infrared luminosity diagram of all redshifts can’t be drawn, which is one of the most serious problems in standard cosmology

Figure 2. Only diagram of Z < 0.5 can be drawn according to the two diagrams and Diagram (L−L) of all redshifts can’t be drawn. Point coordinates should gather closely on both sides of the diagonal. Especially in the left diagram, point coordinates gather far away from the diagonal, which is one of the most serious problems in standard cosmology as well

(2) 通量密度S3.6µm定值时，红移Z非定值査表(1)，如下

=32.27时，Z分别是0.107(905)，0.486(2325)，0.675(6093)，0.290(8564)。

=32.95时，Z分别是0.432(195)，1.138(20150)，0.828(23040)。

NOTES

*中学数学高级教师。

1II/326/zcatrevPost annotationRevised SWIRE photometric redshifts (Rowan-Robinson+, 2013) [DB] Revised SWIRE photometric redshift catalogues (1009607 rows) VizieR http://vizier.u-strasbg.fr/viz-bin/VizieR-4

2II/290/finalcatPost annotationSWIRE Photometric Redshift Catalogue (Rowan-Robinson+, 2008) [DB]. SWIRE photometric redshift catalogue (1066876 rows) http://vizier.u-strasbg.fr/viz-bin/VizieR-4