﻿ 理想气体状态方程的问题和思考 Problems and Thoughts on the State Equation of Ideal Gas

Astronomy and Astrophysics
Vol.05 No.02(2017), Article ID:20293,6 pages
10.12677/AAS.2017.52003

Problems and Thoughts on the State Equation of Ideal Gas

Xinglai Shao, Wei Wang, Yaoming Zhou

The National 305 Project Office of Xinjiang Uygur Autonomous Region, Urumqi Xinjiang

Received: Apr. 11th, 2017; accepted: Apr. 25th, 2017; published: Apr. 28th, 2017

ABSTRACT

The ideal gas equationhas already become the basic knowledge of physics curriculum and the physical formula that must be observed, but the volume of gas in the free space of the atmosphere is not fixed. The air density at the formulais directly proportional to the pressure, which will conflict with some phenomena. This paper uses altitude H instead of pressure P to obtain free space air densityto indicate that the air density with altitude increases exponentially, and leads a negative correlation with temperature. At the same time, the air of the free space should gather from the high pressure place to the place where the pressure is low. It means that the higher the altitude, the lower the pressure, and the air density will increase. The air density calculation formula is deduced from the gaseous equation, and it Calculates a result that troposphere air density at 12 kilometers has increased 15 times than the standard atmospheric pressure P0, and the exosphere at 1000 kilometers has increased 187 fold. Of course, this conclusion is totally opposite with the basic knowledge of “the higher the altitude, the thinner the air”. The reason is perhaps that we neglect the matter named H which has natural content of 99.985%. From this, we can have a corollary that any matter in atmospheric space may be divided into the most simple-matter-H (proton). It will become “neutron” when losing the orbital electrons at the ionized layer, and then it will “escape” into the universe to constitute new materials and planets in a new way and new form. This may be a way by which the earth's materials exchange with the planet’s materials through the atmosphere.

Keywords:Gas Equation, Free Space, Gas Density, Planet Matter

1. 引言

2. 气态方程问题的证明

(2) − (1)得：

3. 自由空间空气密度与海拔高度H的关系式

(3)

(4)

4. 空气密度变化量Δρ的计算公式

(6) ÷ (5)得：

(7)

(8)

(8)’

(8)’’

5. 自由空间空气密度的计算

6. 自由空间空气密度的讨论

1) 自由空间的气体(物质)应该从压力高的地方向压力低的地方流动和聚集，就像水流向洼地形成湖

Table 1. Changes of gas density at different altitudes

Figure 1. Stratification and density change of atmosphere. (Baidu: Dreamstime.com; Tanmu, 2016, modification)

2) 自由空间的海拔越高、气压越低、气体越轻，气体的“分子量”越小、“分子”个数越多，所以气体分子密度越大。比如：2H2O (气态)→2H2↑ + 2O2↑，2个气态水分子在自由空间里应该分解成2个氢气分子和2个氧气分子，其分子个数增加了一倍！

3) P = KH建立在大气压力随海拔的升高而减小的基础上，不同高度的K值是不一样的，所以，这种线性关系只能在一定的高度范围有效，无限推算高度当然存在问题。精确计算不同海拔高度的空气密度最简单的办法就是测得温度变化层的空气密度值。

4) 大雁迁徙在10千米高度(没有缺氧反应)，或许是因为海拔越高、温度越低、气体密度越大，空气浮力越大所致。

7. 结论和推论

1) 空气密度需要考虑天然丰度为99.985%的氕 [8] [9] [10] ，而这种物质的“分子”很小，甚至可以从许多容器中毫无踪迹地逸出。

2) 地球表面升起的水蒸气应该分解成了氢气和氧气。氧气直接融入空气，而氢气与太空中的(臭)氧，在雷电作用下形成雨。

3) 大气中可能富含我们日常生活所需的多种气体。在不同高度和温度空间可能有不同的气体，包括能源气体的存在。

4) 高空大气中的任何气体最终分(裂)解成单个原子H(氕)，并在电离层由于密度的增加和空间的减少而失去核外电子，最终成为中子。

5) 从大气层“逃逸”的“质子”进入宇宙空间以新的方式和形式组成新的物质和星球，地球物质通过这种形式与宇宙星球进行物质交换。

Problems and Thoughts on the State Equation of Ideal Gas[J]. 天文与天体物理, 2017, 05(02): 15-20. http://dx.doi.org/10.12677/AAS.2017.52003

1. 1. 张维善. 物理普通高中标准试验教科书•选修3-3(第三版)[M]. 北京: 人民教育出版社, 2010: 23-24.

2. 2. 傅献彩, 沈文霞, 姚天扬, 候文华. 物理化学(下册第五版)[M]. 北京: 高等教育出版社, 2007: 313-316.

3. 3. 王旭, 崔敏, 周琪等. 空气密度测量仪的研制与测试研究[J]. 物理实验, 2013, 33(12): 41-44.

4. 4. 鲁佩用. “大气压强”实验创新设计[J]. 物理教学探讨(中学教学教研专辑), 2014, 32(3): 67-68.

5. 5. 王子佳. 适用理想气态方程计算瓦斯压强的条件探讨[J]. 煤炭技术, 2005, 24(10): 120-121.

6. 6. 王安强. 图文结合理解大气环流过程及原理[J]. 考试周刊, 2013(23): 126-127.

7. 7. 檀木. 中学地理图文讲解指导地图测(第十三版)[M]. 济南: 山东地图出版社, 2016: 22.

8. 8. 杨晓志. 浅谈高温高压实验地球科学: 方法和应用[J]. 矿物岩石地球化学通报, 2015, 34(3): 509-525.

9. 9. 蒋昌勇, 陈静, 曹小华. 氕氘比CH/CD的四极质谱计测量[J]. 原子能科学技术, 2002, 36(4/5): 462-465.

10. 10. 郑军卫, 张志强, 赵纪东. 21世纪地球科学研究的重大科学问题[J]. 地球科学进展, 2008, 23(12): 1260-1267.