Hans Journal of Civil Engineering
Vol.3 No.06(2014), Article ID:14343,8 pages
DOI:10.12677/HJCE.2014.36020

Performance Analysis of Strengthening the Ductility of the Special-Shaped Column Frame Based on the Test

Zhilong Yang, Yongcheng Sun*

Tianjin Branch, Chinese Nuclear Industry Zhongyuan Construction Co., Ltd., Tianjin

Email: *sunyongcheng2002@163.com

Copyright © 2014 by authors and Hans Publishers Inc.

Received: Sep. 21st, 2014; revised: Oct. 23rd, 2014; accepted: Oct. 31st, 2014

ABSTRACT

Based on the six-story buildings, we designed this model for researching its seismic resistance, which means ductility characters. Depending on the practical calculation and results of the finite element model, we got the relationship between the special-shaped column frame and the cladding steel thickness, the batten distance and the axial compression ratio. And then, we built a good foundation for the further research.

Keywords:Seismic Resistance, Finite Element, Ductility, Special-Shaped Column Frame

Email: *sunyongcheng2002@163.com

1. 前言

2008年5月汶川地震、2013年5月庐山地震，给我们留下了深刻的印象，通过研究现场情况发现，威胁人们生命财产安全的首要因素就是建筑物倒塌，也就是建筑物的延性性能。同时给我们的设计者和科研人员提出了一个严峻的考验，如何保证建筑物的延性特征，如何更好的认识和了解建筑物的破坏形式，如何最大程度的避免此类事件的发生。

2. 试验方法及有线元模型的建立

2.1. 试验参数及模型的选取

2.2. 有限元模型的建立

3. 外包钢异性框架试验结果分析

3.1. 异性框架有限元分析[1]

Figure 1. The schematic diagram of cladding steel reinforces special-shaped column

Figure 2. Effect chart reinforcement

Figure 3. Loading mode of the test

Figure 4. The mechanical model of the special-shaped column frame

Figure 5. The node of the finite element model

Figure 6. The measured hysteresis curves at top-column in RC frame

Figure 7. The theoretical hysteresis curves at top-column in RC frame

Figure 8. The comparison figure of the skeleton curves

3.2. 异性框架延性性能影响因素的有限元分析

3.2.1. 钢板厚度对延性性能的影响

Figure 9. The plastic-hinge location (when the plate thickness is 3 mm)

Figure 10. The relationship between displacement ductility ratio of frame and plate thickness

3.2.2. 缀板间距对延性性能的影响

Figure 11. The relationship between displacement ductility ratio of frame and spacing of batten plates

Figure 12. The plastic-hinge location (when the spacing of batten plates is 360 mm)

3.2.3. 轴压比对延性性能的影响

4. 结论

1) 由图9图10可知，框架的延性随着框架柱的外包钢板厚度的增加而增大。当钢板厚度为3 mm时，框架的正向最大位移，塑性铰发生区域如图10所示，表明在本文所采用的加固方案下，模型仍能够

Figure 13. The relationship between displacement ductility ratio of frame and axial compression ratio

Figure 14. The plastic-hinge location (when the axial compression ratio is 0.8)

2) 由图11可知，框架的延性随着框架柱的缀板间距的增大而减小。塑性铰发生区域如图12所示，表明在本文所采用的加固方案下，模型仍热能够较好的实现梁铰延性框架机制，加固后的框架仍然为“强柱弱梁”的延性结构，可以实现塑性铰向跨中转移的设计思想；并且延性性能与缀板间距关系为：

3) 由图13可知，框架的延性随着框架轴压比的增大而减小。塑性铰发生区域如图14所示，表明在本文所采用的加固方案下，模型仍能够较好的实现梁铰延性机制；并且其延性性能与轴压比关系大致呈：

1. [1]   郝文化 (2005) ANSYS土木工程应用实例. 中国水利水电出版社, 北京.

2. [2]   严士超, 康谷贻 (2007) 混凝土异形柱结构技术规程理解与应用. 中国建筑工业出版社, 北京.

3. [3]   曹菲 (2007) 钢筋混凝土异形柱框架结构抗震性能研究. 博士论文, 辽宁工程技术大学, 阜新.

4. [4]   汪明栋 (2006) 钢筋混凝土异形柱框架抗震性能试验研究与弹塑性分析. 博士论文, 天津大学, 天津.

NOTES

*通讯作者。