﻿ 水泥砼桥面沥青铺装受力影响研究 Study on the Influence of Force on Cement Asphalt Pavement Asphalt Pavement

Hans Journal of Civil Engineering
Vol.07 No.04(2018), Article ID:25251,8 pages
10.12677/HJCE.2018.74064

Study on the Influence of Force on Cement Asphalt Pavement Asphalt Pavement

Yanchang Yang1, Hongtao Li2, Liang Li3

1Luohe Highway Administration Bureau, Luohe Henan

2Luohe Highway Engineering Construction Corporation, Luohe Henan

3Changsha University of Science and Technology, Changsha Hunan

Received: May 12th, 2018; accepted: May 25th, 2018; published: Jun. 1st, 2018

ABSTRACT

This article has taken the example of the asphalt pavement of the Shanglin Interchange over the Mabin (Laibin-Mashan) Expressway as an example to establish a finite element model of the beam. The calculation is based on the tensile stress at the top of the pavement and the shear stress between the layers. Comparing three different pavement schemes, the effects of different driving conditions and temperatures on the asphalt pavement stress were analyzed. The results show that the advantages of the tensile structure of flip-type structure and flip-type resistance to thermal stress are better than other structures.

Keywords:Bridges, Cement Concrete Bridge Pavement, Stress

1漯河市公路管理局，河南 漯河

2漯河市公路工程建设总公司，河南 漯河

3长沙理工大学，湖南 长沙

1. 引言

2. 有限元模型的建立

Figure 1. Finite element model

Figure 2. Double wheel uniform load (unit: cm)

Table 1. Bridge deck pavement system material parameters

3. 行车状况对沥青铺装体系受力的影响

3.1. 车辆超载对沥青铺装体系受力的影响

${\left(\frac{{P}_{i}}{{P}_{0}}\right)}^{0.65}=\frac{{p}_{i}}{{p}_{0}}$ (2.1)

${p}_{i}$ ——超载车辆轮胎接地压强(MPa)；

${P}_{0}$ ——标准轴载(kN)；

${p}_{0}$ ——标准轴载轮胎接地压力(MPa)。

${P}_{i}={p}_{i}s$ (2.2)

Table 2. Different paving structure composite material parameters

Figure 3. Effect of overload rate on the maximum tensile stress at the top of three kinds of schemes

Figure 4. Effect of overload rate on the interface maximum shear stress of three schemes

${\sigma }_{MAX}=0.0032X+0.2430\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9901$ (2.3)

${\tau }_{MAX}=0.0020X+0.1860\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9898$ (2.4)

${\sigma }_{MAX}=0.0012X+0.0898\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9936$ (2.5)

${\tau }_{MAX}=0.0021X+0.1937\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9914$ (2.6)

${\sigma }_{MAX}=0.0021X+0.1625\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9871$ (2.7)

${\tau }_{MAX}=0.0020X+0.1864\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9905$ (2.8)

3.2. 车辆刹车对沥青铺装体系受力的影响

$F=fP$ (2.9)

P——车辆垂直荷载(kN)；

f——水平摩阻系数。

${\sigma }_{MAX}=2.1524{f}^{2}-0.2169f+0.2247\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9927$ (2.10)

${\tau }_{MAX}=0.3095f+0.1737\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9996$ (2.11)

${\sigma }_{MAX}=1.9440{f}^{2}-0.0887f+0.1433\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9889$ (2.12)

${\tau }_{MAX}=0.3125f+0.1816\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9993$ (2.13)

${\sigma }_{MAX}=1.7127{f}^{2}+0.0535f+0.0761\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9871$ (2.14)

${\tau }_{MAX}=0.3108f+0.1742\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9995$ (2.15)

Figure 5. Effect of horizontal friction coefficient on the maximum tensile stress at the top of three kinds of schemes

Figure 6. Effect of horizontal friction coefficient on the interface maximum shear stress of three schemes

4. 温度变化对沥青铺装体系受力的影响

4.1. 温度传递基本理论和边界条件

$q\left(x,y,z,t\right)=-k\Delta T\left(x,y,z,t\right)$ (3.1)

∆T——温度梯度(℃/m)；

k——导热系数(W/m℃)；

t——作用时间(s)。

$q\left(x,y,z,t\right)=-ok\frac{\partial T}{\partial x}-pk\frac{\partial T}{\partial y}-qk\frac{\partial T}{\partial z}$ (3.2)

${q}_{x}=-k\frac{\partial T}{\partial x}{q}_{y}=-k\frac{\partial T}{\partial y}{q}_{z}=-k\frac{\partial T}{\partial z}$ (3.3)

${\Delta }^{2}T\left(x,y,z,t\right)=\frac{1}{\alpha }\frac{\partial T\left(x,y,z,t\right)}{\partial t}$ (3.4)

$\frac{{\partial }^{2}T}{\partial {x}^{2}}+\frac{{\partial }^{2}T}{\partial {y}^{2}}+\frac{{\partial }^{2}T}{\partial {z}^{2}}=\frac{1}{\alpha }\frac{\partial T}{\partial t}$ (3.5)

$T={f}_{i}\left(x,y,z,t\right)$ (3.6)

4.2. 温度应力分析

${\sigma }_{MAX}=0.0005{T}^{2}+0.0440T+0.0262\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9987$ (3.7)

${\tau }_{MAX}=0.0008{T}^{2}-0.0027T+0.1800\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9919$ (3.8)

${\sigma }_{MAX}=0.0002{T}^{2}+0.0355T+0.0750\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9981$ (3.9)

${\tau }_{MAX}=0.0008{T}^{2}-0.0096T+0.2031\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9906$ (3.10)

Figure 7. Effect of temperature change on the maximum tensile stress at the top of three kinds of schemes

Figure 8. Effect of temperature change on the interface maximum shear stress of three schemes

${\sigma }_{MAX}=0.0003{T}^{2}+0.0336T+0.0810\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9979$ (3.11)

${\tau }_{MAX}=0.0008{T}^{2}-0.0071T+0.1899\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}^{2}=0.9866$ (3.12)

5. 结论

1) 超载作用对铺装层顶影响较大，应严格控制超载现象的发生；

2) 当水平摩阻系数超过0.2之后，层顶最大拉应力迅速增加；而界面最大剪应力与水平摩阻系数呈较好的线性相关，并且三种方案相差较小；

3) 各方案层顶最大拉应力随着温度减低而增大，都呈较好的线性关系，这也表明了在低温季节铺装结构顶面承受着较大拉应力，一旦超过铺装材料强度容许值，就会产生开裂。

Study on the Influence of Force on Cement Asphalt Pavement Asphalt Pavement[J]. 土木工程, 2018, 07(04): 559-566. https://doi.org/10.12677/HJCE.2018.74064

1. 1. 朱敏清. 水泥混凝土桥梁铺装层受力特性分析[J]. 桥隧工程, 2017(3): 10.

2. 2. 王光谱. 混凝土箱梁桥面铺装力学行为与结构优化设计[D]: [硕士学位论文]. 西安: 长安大学, 2017.

3. 3. 杨坤. 沥青混凝土桥面铺装力学分析与试验研究[D]: [硕士学位论文]. 西安: 长安大学, 2015.

4. 4. 孔铭. 水泥混凝土路面极限承载力研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2006.

5. 5. 李海军, 黄晓明. 重载条件下沥青路面按弯沉等效的轴载换算[J]. 公路交通科技, 2004(7): 5-8.

6. 6. 黄晓明. 水泥混凝土桥面沥青铺装层技术研究现状综述[J]. 交通运输工程学报, 2014(1): 1-10.

7. 7. 葛倩如. 玄武岩纤维高粘沥青桥面铺装层数值分析[D]: [硕士学位论文]. 杭州: 浙江大学, 2015.