﻿ 太阳能光伏电池板冷却及发电效率的研究 Research on Solar Photovoltaic Panel Cooling and Power Generation Efficiency

Advances in Energy and Power Engineering
Vol.06 No.04(2018), Article ID:26352,7 pages
10.12677/AEPE.2018.64017

Research on Solar Photovoltaic Panel Cooling and Power Generation Efficiency

Daolai Cheng*, Yingxuan Fan

School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai

Received: Jul. 12th, 2018; accepted: Aug. 3rd, 2018; published: Aug. 10th, 2018

ABSTRACT

Different cooling methods are different for reducing the temperature of solar cells and improving the efficiency of photovoltaic power generation. Combining with the related research results at home and abroad in recent years, the comparative analysis of three kinds of traditional natural circulation cooling, forced circulation cooling and solar photovoltaic solar-thermal cooling and on the basis of the new cooling system cooling and power generation efficiency, is obtained by simulation experiment; natural circulation cooling of the economy is very strong. The forced circulation cooling is suitable for experiment and research. The new solar photovoltaic solar thermal cooling effect is the best, especially when combined with the building. It has the advantage of unmatched conventional technology, but the cost is higher. Compared with the traditional PV/T system, plate type PV/T system let the temperature between working medium and solar cells lower. It can also effectively solve the PV/T system power output and heat output contradictory problem, can effectively improve the high grade transformation and utilization, suitable for promotion of development.

Keywords:Solar Energy, Photovoltaic Cells, Cooling Technology, Generating Efficiency

1. 绪论

2. 不同冷却方式对太阳能发电效率的影响

2.1. 传统冷却方式对太阳能发电效率的影响

1) 自然循环对流冷却

2) 强制循环冷却

3) 太阳能光伏光热(PV/T)冷却

2.2. 新型冷却方式对太阳能发电效率的影响

3. 新型太阳能光伏光电(PV/T)循环冷却与发电效率模拟实验研究

3.1. 实验测试台的建立

3.2. 实验测量

3.3. 结果分析

3.3.1. 模拟仿真结果分析

(a) (b)

Figure 1. PV/T experiment platform. (a) Schematic of experiment; (b) Experimental site and equipment diagram

3.3.2. 实验结果分析

Figure 2. Comparative analysis of simulation results of PV/T components

Figure 3. Water outlet temperature of PV/T for one day under normal working conditions

Figure 4. Average PV temperature of PV/T for one day under normal working conditions

Figure 5. Thermal efficiency of PV/T for one day under normal working conditions

Figure 6. Electrical efficiency of PV/T for one day under normal working conditions

3.4. 实验结论

4. 结束语

Research on Solar Photovoltaic Panel Cooling and Power Generation Efficiency[J]. 电力与能源进展, 2018, 06(04): 145-151. https://doi.org/10.12677/AEPE.2018.64017

1. 1. 穆志君, 关欣, 刘鹏. 太阳能光伏光热一体化系统运行实验研究[J]. 节能技术, 2009, 27(5): 447-448.

2. 2. 季杰, 程洪波, 何伟, 等. 太阳能光伏光热一体化系统的实验研究[J]. 太阳能学报, 2005, 26(2): 170-173.

3. 3. 赵春江, 崔容强. 太阳能建材技术的研究与开发[I]——光伏屋顶热性能的调查[J]. 太阳能学报, 2003, 24(3): 352-356.

4. 4. 杨洪兴, 季杰. BIPV对建筑墙体得热影响的研究[J]. 太阳能学报, 1999, 20(3): 270-273.

5. 5. 黄护林. 光伏建材型太阳电池板自然通风冷却的研究[J]. 太阳能学报, 2006, 3(3): 9-16.

6. 6. 陆佳伟, 荆树春, 朱群志. 空冷型光伏光热一体化系统的实验研究[J]. 上海电力学院学报, 2012, 28(6): 529-531.

7. 7. 常泽辉, 田瑞, 侯静. 太阳电池光伏光热一体化系统的性能研究[J]. 电源技术, 2012, 36(5): 682-684.

8. 8. 季杰, 程洪波, 何伟, 等. 太阳能光伏光热一体化系统的实验研究[J]. 太阳能学报, 2005, 26(2): 170-173.

9. 9. Dunn, P.D. and Reay, D.A. (1994) Heatpipes. 4th Edition, New York.

10. 10. Kbarzadeh, A. and Wadowskit (1996) Heatpipe-Based Cooling Systems for Photovoltaic Cell Sunder Concentrated Solar Radiation. Applied Thermal Engineering, 116, 81-87. https://doi.org/10.1016/1359-4311(95)00012-3