Journal of Physiology Studies
Vol.02 No.04(2014), Article ID:14801,13 pages
10.12677/JPS.2014.24004

The Physiological Functions of Aquaporins

Xiaoqiang Geng, Baoxue Yang*

Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing

Email: gxq192@gmail.com, *baoxue@bjmu.edu.cn

Received: Jan. 20th, 2015; accepted: Feb. 2nd, 2015; published: Feb. 5th, 2015

Copyright © 2014 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

The aquaporins (AQPs) are a family of 13 small hydrophobic integral transmembrane water channel proteins involved in transcellular and transepithelial water movement and fluid transport. The study of aquaporins has experienced from discovery to the exploration of their physiological functions. It has been found that aquaporins are expressed in various tissues and organs and they have different physiological functions, including urine concentration, exocrine gland secretion, hydration of brain, transduction of neuronal signaling and metabolism. The studies on aquaporins can provide novel ideas to the mechanism and therapy of related diseases. This review article discusses the recent researches on the physiological functions of AQPs in different tissues and organs.

Keywords:Aquaporin, Integral Transmembrane Protein, Water Channel, Water Transport

水通道蛋白生理学功能的 研究进展

耿晓强,杨宝学*

北京大学基础医学院药理学系,北京

Email: gxq192@gmail.com, *baoxue@bjmu.edu.cn

收稿日期:2015年1月20日;录用日期:2015年2月2日;发布日期:2015年2月5日

摘 要

水通道蛋白是介导水跨细胞膜转运的膜整合蛋白,可以高选择性地通透水并且对体内水的转运发挥调控作用。对于水通道蛋白的研究经历了从发现到结构、功能的探索,研究结果表明水通道蛋白在机体多个组织器官都有表达,发挥重要的生理作用,包括肾脏的尿浓缩功能、外分泌腺的分泌功能、大脑水合功能、神经信号传导和新陈代谢等,水通道基因突变与某些疾病的发生发展有关。因此,研究水通道蛋白的生理功能可为阐明相关疾病的发病机制和确定药物靶点提供新的思路。本文就近年来水通道蛋白的生理学研究进展予以综述。

关键词 :AQP,膜整合蛋白,水通道,水转运

1. 引言

水通道蛋白(aquaporins, AQPs)是一类存在于细胞膜的小分子蛋白,在动植物体内广泛表达。1985年,Benga等人首次发现红细胞膜存在通透水的通道蛋白[1] 。1988年,Agre等人从红细胞膜中克隆出一种新的膜蛋白,将其命名为CHIP28。随后,Agre等人确定了CHIP28转运水的功能,并将其更名为aquaporin 1 (AQP1) [2] 。现已发现13种水通道蛋白的亚型(AQP0-AQP12) [3] 。水通道蛋白的单体包含六个α-螺旋跨膜区域,这些区域包含嵌入膜内的两段高度保守的天冬酰胺–脯氨酸–丙氨酸序列。水通道蛋白可分为:转运水的正统AQP (AQP0、AQP1、AQP2、AQP4、AQP5、AQP6和AQP8)、转运小分子溶质和水的甘油AQP (AQP3、AQP7、AQP9和AQP10)以及非正统AQP (AQP11和AQP12) [4] 。AQP不仅在组织水转运中起到重要作用,也参与了细胞增殖、凋亡、迁移、吞噬和神经信号传导等过程[5] 。

2. 水通道蛋白在各器官、组织中的分布及生理功能

2.1. 神经系统

水通道蛋白广泛地表达于中枢神经系统和外周神经系统中,目前对于中枢神经系统中的AQPs的研究更为热门。

2.1.1. 大脑

大脑中的水通道蛋白主要为AQP1、AQP4和AQP9 [6] 。其中AQP4主要分布于血脑屏障的星形细胞足突、蛛网膜下腔脑脊液空间的胶质细胞层以及室管膜和室管膜下的胶质细胞层[7] 。胶质细胞虽然不属于神经细胞,但是对中枢神经系统的功能调控和稳态维持起到重要作用,且占大脑细胞数量的90% [8] 。其中,星形胶质细胞是大脑内所占比例最大的神经胶质细胞类型,星形胶质细胞质膜上表达AQP4。早期对大胶质细胞的定量免疫金分析表明神经胶质的终板上的AQP4表达量比非终板膜上的高10倍[9] [10] 。最新研究发现,AQP除了转运水之外,也参与了调节神经元干细胞的繁殖、迁移和分化过程[11] 。

AQP4在大脑中的生理功能包括:调控细胞外空隙的体积、对K+的缓冲、脑脊髓的液体循环、组织液的再吸收、废物的清除、神经炎症、渗透压敏感性、细胞迁移以及钙离子信号通路[12] 。脑部创伤、肿瘤、蛛网膜下出血、局部缺血和炎症可以引起胶质细胞AQP4表达上调[7] 。星形细胞终板上的AQP4分布较为集中,而星形细胞终板与血管相接触进而联系血–脑、脑–液界面,因此星形细胞终板通过AQP4在血脑屏障(BBB)水交换的机制中发挥作用。AQP4可以通过维持K+的聚集调控神经的兴奋性。通过RNA干扰沉默星形胶质细胞的AQP4,发现大鼠脑中表面扩散协同作用(用来测定组织中水的运动)下降50% [13] ,说明AQP4在脑中的低表达与癫痫发作相关[14] 。调节性细胞容积减小(RVD)是阻止细胞肿胀、控制细胞容积的重要保护机制。AQP4可与瞬时感受器电位离子通道4 (TRPV4)在星形胶质细胞膜上共表达,且能够结合成复合物,在RVD过程中起到重要作用。实验发现,当鼠的星形胶质细胞在低渗透压环境时,RVD应答机制会引起细胞内钙离子浓度增高,然而当细胞缺少了AQP4或者通过小干扰RNA来沉默TRPV4时,RVD应答机制会失效[15] 。

AQP4也与脑水肿的病理生理过程有密切关系,脑水肿分为血管源性和细胞毒性脑水肿,其中血管源性脑水肿为白质的细胞外间隙液体贮留,因损伤、血–脑脊液屏障发生障碍,大量的液体从毛细血管内渗出到细胞外组织间隙,白质水肿明显。而细胞毒性脑水肿多见于缺血或中毒,此时细胞膜的Na + -K + -ATP酶失活,细胞内水钠贮留,引起神经细胞、胶质细胞、内皮细胞肿胀,主要累及灰质。AQP4介导水由血管经过内皮细胞到达星形胶质细胞的过程,AQP4敲除小鼠细胞毒性脑水肿减轻[16] 。AQP4在星形胶质细胞过表达小鼠细胞毒性脑水肿加重[7] 。AQP4也被认为可以调节血管源性脑水肿中的液体重吸收,此过程是将液体从星形细胞终板的细胞外间隙经内皮或上皮转运至血管和脑室部位。实验证明AQP4缺失小鼠由于缺少从细胞间到血管或脑脊液的转运过程而表现出大脑中水累积增加现象[17] 。

AQP1主要分布于大脑脉络丛,与Na + -K + -ATP酶共同定位于该部位[18] ,但AQP1也在星形细胞瘤微血管上皮、肿瘤星形胶质细胞以及脑转移性肿瘤的微血管上皮、反应性星形胶质细胞表达,也被认为在血管源性脑水肿的发展中起重要作用[19] 。在AQP1缺失小鼠,由渗透压变化引起的水转运减少了5倍,同时颅内压下降,脑脊液生成量减少了25% [20] 。

AQP1在大脑中的生理功能包括:参与脑脊液的生成以及调节水和离子的平衡[21] 。脑脊液的异常流动与脑积水的形成密切相关,提示AQP1对水的调节作用可作为治疗脑积水的潜在方法[22] 。此外,AQP1在脑部肿瘤、偏头痛、海绵状脑病以及朊病毒病中的潜在作用也陆续被发现。研究发现,在星形胶质细胞瘤中随着肿瘤恶性程度的增高,AQP1的表达也明显增高[23] 。Dolman等发现在正常脑组织中,星形胶质细胞可能抑制AQP1在脑毛细血管内皮细胞中表达,而在脑星形胶质细胞瘤组织中,由于缺乏功能正常的星形胶质细胞,从而在其内皮细胞中出现AQP1的高表达。由此推测胶质细胞终板可能传递信号给附近的内皮细胞,进而阻止正常脑组织毛细血管内皮细胞AQP1的表达[24] 。

2.1.2. 其他神经系统器官

AQP除了在大脑中广泛表达外,还可以在眼、嗅觉上皮、内耳以及脊髓中表达。

在眼,AQP1分布于角膜内皮、晶状体上皮、睫状体上皮和视网膜色素上皮,AQP3分布于角膜上皮和结膜上皮,AQP4分布于睫状体上皮和视网膜Müller细胞,AQP5分布于角膜上皮和结膜上皮,AQP0分布于晶状体纤维细胞,AQP7分布于角膜上皮、角膜内皮、晶状体上皮和睫状体无色素上皮,AQP9分布于睫状体无色素上皮、视网膜神经节细胞、视神经乳头和视神经[25] 。AQP1和AQP4共同参与房水的生成,AQP7和AQP9的定位表明其参与代谢功能[26] 。视网膜上的水通道蛋白主要是AQP4,对视网膜的稳态有重要作用。在视网膜,AQP4位于胶质细胞(包括星形胶质细胞及Müller细胞)的特殊膜域,使水沿着静水压和渗透压的梯度流动。研究资料表明,AQP4不仅与正常视网膜中水、电解质、渗透压平衡的维持和眼内压的调节有关,而且与疾病状态下视网膜水肿时水的异常转运有关。在高眼压/再灌注损伤大鼠模型中,不仅视网膜内AQP4的表达量可出现异常,而且其在视网膜中的定位也可发生改变[27] 。

AQP4与视神经脊髓炎(NMO)的关系是近些年研究热点,NMO是一类中枢神经系统炎性脱髓鞘病,主要累及视神经和脊髓。1894年,法国神经病学家Eugène Devic等人探讨了合并脊髓炎的视神经炎病例,NMO (Devic病)才为人所知[28] -[30] 。临床上,NMO和多发性硬化症(MS)均属于神经脱髓鞘疾病,NMO曾被认为是MS的变种,二者通常难以鉴别,但在2004年首次报道NMO-IgG只在NMO患者中存在,在MS患者中不存在,因此NMO-IgG可以作为NMO的特异性自身抗体标记物[31] 。一年后,星形胶质细胞足突上的AQP4被证实为NMO-IgG的结合靶点[32] 。利用AQP4转染的HEK293细胞、中国仓鼠卵巢细胞及小鼠大脑皮质星形胶质细胞证实AQP4与AQP4-IgG在细胞质膜上结合,导致补体膜攻击复合物在质膜沉积产生细胞毒性[33] -[35] ,这些发现为AQP4-IgG的致病性提供了细胞水平上的证据。临床观察[36] 、组织学和动物实验也证明了AQP4-IgG可以导致NMO病变[37] -[39] 。NMO的发病机制为AQP4- IgG进入中枢神经系统,首先发生补体调节的星形胶质细胞病变,随后粒细胞浸润、少突胶质细胞死亡,最终神经元死亡,由于NMO的病变为中枢神经系统细胞的坏死,临床症状常表现严重且预后较差[39] - [41] 。临床方面,AQP4-IgG在鉴别诊断NMO和MS等炎症性神经疾病中具有高特异性,可以用来鉴别NMO、MS及其他中枢神经系统自身免疫疾病[42] ,目前NMO的治疗方法主要为免疫抑制(类固醇激素、咪唑硫嘌呤、霉酚酸酯)、免疫调节(利妥昔单抗)和血浆置换[43] ,但这些治疗方法均未直接针对NMO的病因,且可能存在潜在的长期副作用和免疫抑制。由于AQP4-IgG与AQP4结合可能是NMO的起始步骤,因此利用一种非致病性抗体或小分子与AQP4结合可以阻止AQP4-IgG与AQP4的结合,或者通过酶失活使AQP4-IgG致病性下降[44] ,从而为治疗NMO提供特异性靶向治疗思路。目前已经研发出了非致病性的高亲和力单克隆抗体(Aquaporumab),可以与AQP4高选择性地结合,从而阻止患者血清AQP4- IgG与AQP4结合,Aquaporumab无细胞毒性,不影响AQP4的透水性,动物实验证明其可显著降低NMO病变程度[44] 。几种小分子(阿比朵尔等)和天然药物也被发现可以阻止AQP4-IgG与AQP4结合 [45] 。抗体失活也可以作为NMO等自身免疫病的潜在治疗手段,这种方法利用细菌酶高选择性地靶向结合IgG抗体,从而中和其致病性。糖类内切酶(EndoS)是一类选择性降解所有IgG重链上的天冬酰胺链接聚糖的酶,对其他类免疫球蛋白和聚糖无作用,IgG重链上的天冬酰胺糖基化作用对抗体效应功能起重要作用,利用EndoS对NMO患者血清处理可防止补体依赖性细胞毒性反应(CDC)和抗体依赖性细胞毒性反应(ADCC),同时对AQP4-IgG与AQP4结合无影响[46] ,因此EndoS去糖基化作用可以将致病性的AQP4-IgG转变为治疗性的阻断抗体,具有治疗NMO的潜在价值。

在嗅觉上皮,主要存在AQP4表达,研究表明其功能主要与嗅觉的产生相关。实验发现AQP4广泛分布于小鼠嗅觉系统包括嗅黏膜、嗅神经和嗅球的多个部位,可能具有保护嗅神经束和促进神经信号传递的作用[47] 。

现有的研究结果表明,内耳表达除AQP0、AQP8及AQP10以外的各型AQP家族成员。在动物实验中发现[48] :以免疫荧光技术及RT-PCR方法证实AQP1在内耳的大部分区域表达;AQP2在哺乳动物内耳中的表达情况似乎与种群有关;AQP3主要位于螺旋韧带、螺旋缘、前庭唇、内外螺旋沟的表面,前庭膜、内淋巴囊、内淋巴管、内耳血管壁等处也出现较强的AQP3表达[49] ,另外,内淋巴囊内的类固醇激素经前庭导水管可对内耳的AQP3表达有调节作用,调整内淋巴液的内环境平衡[50] ;人体标本的免疫组化分析表明AQP4表达于外沟细胞、Hensen细胞、Claudius细胞、前庭支持细胞及内淋巴囊上皮。AQP4在内耳组织的表达定位提示其可能参与维持内耳感觉上皮的水渗透平衡,并且种属间AQP4表达的相似性和调节序列的保守性提示AQP4在内耳的功能高度保守和稳定。AQP4的正常表达是维持听功能所必须的。免疫荧光方法证实AQP5定位于蜗管螺旋突的外沟细胞上,并且表现为一种高度的区域性分布特征, 即只在耳蜗尖顶表达而基底不表达。由于耳蜗顶部主要感受低频声波刺激, 因此推测其功能可能与低频声刺激有关。但是,在对敲除AQP5基因的小鼠进行听力检测时未发现明显异常[51] ,似乎表明AQP5与听力关系不大。对于内耳其他水通道蛋白的研究较少,尚无法明确其具体功能。

脊髓主要表达AQP4、AQP5、AQP8和AQP9四种水通道蛋白[52] 。AQP4主要分布在脊髓灰质的原生质胶质细胞,以及临近脊髓毛细血管内皮的神经胶质足突,AQP4在脊髓中的分布表明其在脊髓水平衡中的作用,实验证明鼠AQP4与脊髓水肿、水中毒、局部缺血性中风相关。AQP4也分布在室管膜层和软膜表面的胶质细胞。AQP5在脊髓中表达量较少,无法用免疫组化方法检测出。AQP8主要定位于中央管室管膜细胞,由于脑脊液可以从脊髓蛛网膜下腔迅速转运至血管周围空间和中央管[53] ,因此AQP8的分布表明其可能与AQP4和AQP9共同在水转运中起作用。AQP8主要促进水转运至中央管。AQP9分布于胶质界膜和白质神经束细胞,主要在维持细胞外水稳态、水肿形成、促进甘油和一元羧酸分散、病理性缺血状态乳酸盐清除中发挥作用[52] 。AQP1表达在背根神经节(DRG)神经元质膜,2010年,Zhang等发现一种AQP1-Nav1.8相互作用方式可以解释背根神经节的AQP1在炎性热痛和寒冷疼痛中发挥的作用[54] 。

2.2. 心血管系统

人类心脏表达AQP1、AQP3、AQP4、AQP5、AQP7、AQP9、AQP10和AQP11 [55] 。AQP1和AQP4表达在心肌,利用免疫荧光技术显示出AQP1在人类心脏微血管中广泛大量地表达,AQP1是血管内皮细胞主要的水通道蛋白[56] 。对AQP1和AQP4敲除小鼠心脏的研究发现,只有AQP1在心肌细胞对水渗透起作用[55] 。利用免疫印迹法可以证明AQP4在人类心肌细胞质膜表达[57] 。一项研究发现,表达在鼠类心肌细胞的AQP4会影响心肌细胞对伴有心肌挛缩的低渗休克的抵抗能力,且在心肌细胞局部缺血损伤中有不利影响,而AQP4敲除小鼠表现较轻微的心肌缺血性损伤,表明AQP4有可能作为心梗的治疗靶点[57] 。

2.3. 呼吸系统

呼吸系统主要表达AQP1、AQP3、AQP4和AQP5四种水通道蛋白。在呼吸系统,粘膜下分泌功能、气道的水合作用以及肺泡的液体运输等生理功能需要上皮细胞和内皮细胞对水的渗透,AQP在这些组织中调节细胞间的水转运[58] 。AQP1主要分布在肺和上呼吸道的毛细血管内皮细胞,AQP3和AQP4分布在气管上皮层的基底外侧膜[59] ,AQP5主要分布在末端肺I型肺泡上皮细胞和腺泡上皮下层腺细胞[60] ,也分布在支气管上皮,调节气管表面水合作用。研究发现,在气管炎症(如COPD)状态时,AQP5的表达下降与黏液分泌过多有关[61] 。最初的研究测量了AQP1和AQP4敲除小鼠肺的水渗透性,发现AQP1缺失小鼠的内皮水渗透性下降了十倍,表明AQP1参与水的细胞间渗透过程。但研究发现AQP1缺失并不影响肺泡液的吸收过程,而且AQP4敲除小鼠并没有表现水渗透性相关生理功能的异常[62] 。此后的研究发现,AQP1和AQP5是气管上皮细胞间主要的水转运通道,AQP5在I型肺泡上皮细胞顶端质膜发挥转运水的作用[63] 。

AQP5在呼吸系统功能的研究近年较多,例如在高山肺水肿的研究中发现,AQP5敲除小鼠肺组织的干湿重比率和支气管肺泡的蛋白聚集比野生型的略微增高,出血性肺水肿的组织学研究表明,在高山肺水肿,AQP5的缺失会轻度增加肺水肿和肺损伤程度,表明AQP5在海拔高度刺激下引起的高山肺水肿中发挥重要作用[64] 。肺部DIC模型小鼠的实验表明,AQP5表达下降可能会引起肺泡和毛细血管的液体运输障碍[65] 。AQP1和AQP5在肺泡空隙和毛细间隔之间水的转运中发挥重要作用,这种作用对于气管水合作用、气管的防御功能以及多余肺泡液的重吸收至关重要[3] 。

2.4. 肾脏

对AQP在肾脏生理作用的研究是最为深入的AQP研究领域之一[66] 。肾脏是血管加压素(AVP)受体主要表达器官,机体通过AVP调节肾脏的水平衡生理作用。肾脏对水的重吸收主要通过AQP介导,进而完成尿浓缩过程[3] 。肾脏中AQP类型主要为AQP1-4、AQP6-8及AQP11 [67] 。AQP1分布于近端小管、髓袢降支和直小血管降支;AQP2主要分布于集合管主细胞,在顶端质膜和管腔膜囊泡均有分布;AQP3和AQP4表达于肾脏集合管上皮基底外侧膜[68] 。AQP6分布于集合管的A型泌酸细胞中,AQP6只存在于细胞内的囊泡中,其具体的生理功能目前尚不清楚。AQP7表达于近曲小管的第3段。AQP8主要分布在近曲小管和集合管上皮的细胞。AQP11是新近发现的AQP超家族亚型,AQP11缺失小鼠是多囊肾的新的动物模型并有助于揭示新的肾囊泡发生机制[69] 。

AQP1位于肾脏近曲小管及亨利袢降支的顶质膜与侧膜,主要介导原尿中水的重吸收。AQP1基因敲除小鼠可出现尿浓缩功能严重受损,表现为多尿、多饮,在限制进水的情况下会出现严重的脱水现象。最近有报道称AQP1还涉及细胞的迁移,可能在近曲小管对损伤的反应中发挥作用。因此,AQP1的拮抗剂和激动剂通过对AQP1的功能调控可能会对一些疾病产生临床治疗作用[70] 。

AQP2是目前所知唯一的血管加压素(AVP)敏感性水通道,AVP通过调节AQP2的表达和移位改变集合管主细胞对水的通透性[71] 。AVP激活的AQP2移位是由蛋白激酶A(PKA)依赖通路引起的[72] ,受到渗透压刺激后,机体释放AVP,AVP在肾脏集合管主细胞的基底外侧膜与血管加压素受体V2R(一种G-蛋白偶联受体)结合,进而活化G-蛋白偶联受体PKA对胞内囊泡中的AQP2Ser266位点磷酸化,这一系列过程促进囊泡沿着微管网络向顶膜的移位,AQP2易位到质膜[73] 。AVP撤除后,AQP2再通过胞吞方式从质膜回到胞质内,水通道关闭。AVP的长时调节作用是通过诱导AQP2表达增加,从而提高水转运能力。

AQP2是促进水重吸收重要的水通道蛋白。研究表明,肾性尿崩症(NDI)与AQP2密切相关,NDI的发病机制是V2R或AQP2基因突变,使肾脏对AVP不敏感或AQP2促进水重吸收功能下降,从而引起尿浓缩功能障碍和多尿。目前发现超过20种AQP2的突变会导致常染色体遗传性NDI [74] -[76] ,导致NDI的AQP2蛋白突变可能是由于AQP2蛋白的错误折叠造成的,且错误折叠后的蛋白在内质网蓄积,化学分子伴侣(如甘油)可以使蛋白正确折叠并恢复正确的转运,通过促进蛋白的正确折叠可能对NDI起到治疗作用[75] 。研究发现,表达AQP2的卵母细胞的透水性(Pf)比对照组增长了近十倍[77] 。通过AQP2突变体AQP2-T126M基因敲入产生由AQP2功能缺失导致的NDI小鼠模型[78] ,利用此模型可研究致病AQP2突变的体内生化指标及AQP2突变导致的NDI的病理生理过程[79] 。通过该动物模型发现了热休克蛋白90(HSP90)抑制剂可部分缓解由AQP2突变引起的尿浓缩障碍,为治疗NDI提供了新的思路[80] 。

对Ca++有通透性的TRPV4离子通道与AQP2之间的相互作用会在肾集合管细胞低渗状态时和肾血管病(RVD)时发生,证实AQP2和TRPV4是低渗状态引发的RVD肾脏反应中的重要组成部分[81] 。AQP2也可以不依赖AVP,对高渗状态表现反应。实验表明,高渗状态(600 mOsM/kg)可以显著增加AQP2的活性。无AVP情况下,急性低渗状态也可引起AQP2向细胞膜的移位,实验证明大鼠肾脏集合管细胞AQP2在细胞膜和高尔基体中的聚集依赖MAPK、P38以及ERK1/2信号通路[82] 。

AQP3、AQP4在肾脏集合管的基底外侧膜表达[83] 。AQP3对水、甘油、尿素等具有通透作用,在肾脏水分重吸收中担任重要角色,当其在集合管异常表达或功能受抑制时则会出现尿浓缩功能障碍[83] 。研究发现AQP4基因敲除小鼠尿液最大浓缩能力降低约20%,内髓集合管微灌流实验表AQP4敲除小鼠内髓集合管跨上皮通透性下降近80%,表明AQP4在集合管上皮由渗透压驱动的跨上皮水转运过程中发挥作用[84] 。AQP在肾脏细胞中的特殊定位提供了水重吸收的跨细胞通道,通过顶膜表达的AQP可以将水分从原尿中重吸收,再通过基底外侧膜上的AQP进入血管[85] 。

AQP6只存在于细胞内的囊泡中,其具体的生理功能可能与阴离子的转运有关[86] 。AQP7表达于近曲小管的刷状缘细胞上,转运水和甘油,在近曲小管水重吸收过程中具有生理意义。研究结果显示AQP11可转运水,对维持近曲小管的功能发挥作用,AQP11敲除鼠表现多囊肾病(PKD) [69] 。

2.5. 消化系统

消化系统的主要功能包括消化和吸收,两个过程都需要液体的跨细胞膜转运。例如唾液、胃液和肠液等消化液的分泌,以及每日约9L的液体吸收都是由消化系统完成的。消化系统中的水通道蛋白包括了AQP1、AQP3、AQP4、AQP8及AQP9等[3] 。

AQP1存在于胆管细胞的顶膜和基底外侧膜以及细胞质中,同时存在于胰腺和毛细血管内皮细胞上负责透内皮的水转运。

AQP3存在于胃肠道上皮层、口腔至前胃部的上消化道上皮组织中,在基底层和中间层细胞膜上分布较多,向上皮表面方向分布逐渐减少,AQP3被认为从上皮内层为上皮细胞提供水分,防止上皮细胞受到外界环境的影响,如胃中的低pH等。在结肠末端和直肠,AQP3分布在内腔上皮细胞基底外侧膜[87] 。大鼠实验中,给予AQP抑制剂HgCl2后引起了腹泻,表明了AQP3对肠道内水的调控作用[88] 。AQP3可能介导排泄物中水分的重吸收过程,此过程中,水从肠腔经过内皮细胞层,再转运至血管[56] 。

AQP4存在于胃肠道上皮层,免疫组化实验发现AQP4表达在鼠胃壁细胞基底外侧膜上,但研究表明其对胃酸分泌无影响[89] 。对小鼠的研究发现,AQP4在结肠上皮中通过跨细胞对水的转运促进经上皮的水渗透性,但对于结肠液体分泌和排泄物的脱水几乎没有作用[90] 。

AQP8存在于胰腺管细胞顶端质膜、肝细胞[91] [92] 。AQP8可能在胆汁分泌中发挥作用,大鼠的肝细胞质膜和肝细胞内的囊泡中都发现存在AQP8。短期给予cAMP可引起AQP8向膜上的再分布以及水渗透率的升高,微管抑制剂秋水仙碱可阻断cAMP引起的这种效应,表明AQP8的转运作用是受cAMP刺激,并且需要微管的存在[93] 。

AQP9存在肝细胞中,参与甘油向葡萄糖、甘油三酯合成全过程,此过程与糖尿病的发生有关。在肝脏,阻断AQP9的表达可减少葡萄糖的生成。最新的研究还表明AQP9与非酒精性脂肪性肝病(NAFLD)的联系,肝脏对甘油三酯的摄取下降可对人体起到有益的作用[94] 。

2.6. 生殖系统

在男性和女性的生殖系统,细胞的水、激素渗透性对于卵泡生成、精子生成和渗透压适应至关重要[3] 。近年对于人类生殖系统AQP的研究表明,水通道蛋白在生殖系统发挥重要的生理作用,水的跨细胞转运和调控都与AQP相关[95] 。AQP还与一些生殖系统的疾病相关,例如多囊卵巢综合症、卵巢肿瘤等[96] 。

2.6.1. 女性生殖系统

卵巢中主要存在AQP7、AQP8和AQP9,在卵泡生成过程中,卵巢腔因迅速通过颗粒细胞进入的水而扩张。McConnell等人研究发现流入大鼠孤立的卵泡腔的水是C-菊粉的3.5倍,表明水分流入囊腔的过程中有跨细胞的途径[95] 。通过利用HgCl2对早期卵泡的处理后发现,水的运动相比于菊粉下降,揭示了AQP在卵泡生成过程中对水起到转运调控的作用。最近一项针对多囊性卵巢综合症(PCOS)妇女的研究中,利用免疫荧光技术证实了AQP9在颗粒细胞的细胞核、细胞质和细胞膜表达。研究包括了14名多囊性卵巢综合症患者和31名因输卵管阻塞而不孕的对照组患者。PCOS组中卵泡液总睾丸素(TT)和黄体生成素(LH)水平相对于对照组有所上升,而性激素结合球蛋白(SHBG)水平降低。RT-PCR结果表明,PCOS患者的AQP9mRNA水平下降,且AQP9mRNA与TT、LH和SHBG在PCOS患者组中有显著相关性,而在对照组中无相关性。细胞实验也证明了PCOS时,卵泡液中的雄性激素过多,且能够通过PIK3通路抑制颗粒细胞中AQP9的表达,影响卵泡的生长[96] 。

2.6.2. 男性生殖系统

男性生殖系统主要表达AQP1、AQP3、AQP7和AQP9。AQP在维持精液的构成和功能以及受精能力方面发挥重要作用[3] 。研究发现AQP7在睾丸中和成熟精子的细胞膜表达[97] 。精子也表达AQP3 [98] 。AQP3被认为可以调控精子的渗透压适应性,在受精过程中,精子暴露于低渗环境中,可能会因过度膨胀或运动减弱而受到危害[99] 。AQP3位于精子鞭毛的膜上,AQP3突变的精细胞在进入子宫的低渗环境时,表现出运动能力下降、肿胀程度增加、尾部弯曲的现象,从而使精子到达输卵管的几率下降,阻碍了受精的发生。这种缺陷可能是因为无效的RVD机制和在低渗环境中的肿胀造成的[100] 。

最近的一项研究概述了AQP7定位与精子特性之间的关系,运用透射电子显微镜显示出了AQP7可表达在精子中心粒区域、中段、赤道段以及整个尾部。异常的精子标本中,表现低强度荧光和异常染色形态的精子比例增多,细胞质残余小体、头部及尾部存在弥漫AQP7免疫染色。正常精子AQP7标记与精子的运动能力、形态之间的相关性表明AQP7同样具有调节精细胞和男性生育能力的作用[101] 。

男性的附睾中也存在AQP的表达,其中第一个被发现的是AQP9,其被认为是上皮组织主细胞主要的AQP [102] 。成年大鼠的AQP9可介导甘油、尿素、甘露醇和山梨醇等溶质的经上皮转运,受雄性激素的调控[103] 。AQP3存在于附睾的基底细胞膜上。AQP1在附睾上皮细胞中不表达,但在附睾的平滑肌和血管内皮与AQP10共同表达[104] 。

2.7. 皮肤系统

皮肤系统包括皮肤、毛发、指甲以及神经、脂肪和一些腺体。在皮肤系统中,主要表达AQP1、AQP3、AQP7、AQP9和AQP10。

皮肤具有保持水平衡和屏障功能的重要功能,其中的水和甘油等成分对维持皮肤正常功能发挥重要作用,其由表达在表皮基底层浆膜上的AQP3调控,而在颗粒层中AQP3减少,在角质层中AQP3无表达[105] 。

Sugiyama及同事首次报道了AQP3及AQP9在培养的人角质细胞表达,但AQP9只在正在分化中的细胞表达 [106] 。AQP3敲除小鼠表现皮肤屏障功能损坏和角质层水合作用下降,当皮肤毛孔闭塞或暴露在潮湿环境时,上述情况也无改善。局部或口服给予甘油可改善AQP3敲除小鼠的皮肤损伤[107] 。

在疾病状态和正常状态时,AQP1的表达无差异,但发现AQP3上调[108] 。角质层水合作用下降的皮肤疾病中,AQP3的表达水平发生改变。研究发现,银屑病患者的皮肤中,AQP3主要表达在细胞质中而非细胞膜上,表明AQP3可能在细胞间水和甘油的转运过程中发挥重要作用[109] 。

AQP5被认为主要表达在皮肤颗粒层角质细胞的细胞膜,对维持皮肤细胞间水平衡发挥重要作用,AQP5在汗腺上皮细胞中表达水平比在表皮细胞中更高[101] 。

2.8. 皮肤系统

AQP7大量表达在脂肪细胞的细胞膜,是白色脂肪和棕色脂肪中主要的甘油转运体。模型小鼠的脂肪细胞实验表明,在细胞分化时,AQP7mRNA的表达与甘油的释放是相关的,说明细胞膜的甘油渗透率可能会调节脂肪细胞中脂肪的累积[110] 。近期研究认为AQP10是人体脂肪细胞甘油流出的旁路途径[111] 。

2.9. 肌肉骨骼系统

在骨骼肌肉组织中,主要存在的水通道蛋白为AQP1、AQP3、AQP4和AQP9 [3] 。肌纤维主要表达AQP4 [112] 。实验证明,AQP4在肌肉收缩和肌肉快速收缩时代谢变化过程中发挥支持作用[113] ,AQP4的累积可能会引起快速的肌纤维体积变化,且与毛细血管内流体静压的巨大变化和细胞内渗透性分子聚集有着重要联系。功能方面,小鼠在运动后并没有引起AQP4表达的改变,这种现象可以解释为趾短屈肌未参与运动过程[114] 。

在关节软骨,主要存在AQP1和AQP3。关节软骨属于无血管组织,主要的成分为水。利用免疫组化的方法对骨关节炎患者的软骨组织进行分析,可以证实AQP1和AQP3定位于膝盖软骨关节和软骨细胞。实验表明AQP1和AQP3可能在软骨关节的水代谢和骨关节炎的发生中发挥作用[115] 。

椎间盘主要表达AQP1和AQP3。椎间盘包括三部分:纤维环、软骨终板和它们包绕密封的髓核。髓核的主细胞及软骨组织均可分泌蛋白多糖和II型胶原,胶原网络会捕捉携带负电荷的蛋白多糖,而蛋白多糖可以吸引阳离子(主要为K+,Na+和Ca++),进而引起水分的内流,此过程是对组织高渗状态的一种反应,用来抵抗静态和动态的生物力学负荷[116] 。

3. 水通道蛋白研究的展望

经过二十余年对水通道蛋白的研究,人们对AQP的生理功能已经有了较为深入的认识。尤其是AQP对调节人体内水稳态的作用、为水的快速转运和非电解质溶质通过细胞膜提供通道以及在脑血管阻力中的重要作用等。总而言之,AQP在细胞膜上对水的渗透和细胞间水的转运调控作用使其成为了人体内重要的膜通道蛋白。通过对其生理学的研究,可以进一步了解AQP在不同器官和组织中的特殊作用,为今后研究与之相关疾病的发生发展以及治疗提供新的思路和治疗靶点。

基金项目

国家自然科学基金(No. 30870921, 81170632, 81261160507)、科技部国际科技合作与交流专项(No. 2012DFA11070)、教育部高等学校博士学科点专项科研基金(No. 20100001110047)。

文章引用

耿晓强,杨宝学, (2014) 水通道蛋白生理学功能的研究进展
The Physiological Functions of Aquaporins. 生理学研究,04,19-32. doi: 10.12677/JPS.2014.24004

参考文献 (References)

  1. 1. Benga, G., Popescu, O., Borza, V., Pop, V.I., Muresan, A., Mocsy, I., Brain, A. and Wrigglesworth, J.M. (1986) Water permeability in human erythrocytes: Identification of membrane proteins involved in water transport. European Journal of Cell Biology, 41, 252-262.

  2. 2. Denker, B.M., Smith, B.L., Kuhajda, F.P. and Agre, P. (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. The Journal of Biological Chemistry, 263, 15634-15642.

  3. 3. Day, R.E., Kitchen, P., Owen, D.S., Bland, C., Marshall, L., Conner, A.C., Bill, R.M. and Conner, M.T. (2014) Human aquaporins: Regulators of transcellular water flow. Biochimica et Biophysica Acta, 1840, 1492-1506.

  4. 4. Rojek, A., Praetorius, J., Frokiaer, J., Nielsen, S. and Fenton, R.A. (2008) A current view of the mammalian aquaglyceroporins. Annual Review of Physiology, 70, 301-327.

  5. 5. Verkman, A.S. (2012) Aquaporins in clinical medicine. Annual Review of Medicine, 63, 303-316.

  6. 6. Badaut, J., Fukuda, A.M., Jullienne, A. and Petry, K.G. (2014) Aquaporin and brain diseases. Biochimica et Biophysica Acta, 1840, 1554-1565.

  7. 7. Yang, B., Zador, Z. and Verkman, A.S. (2008) Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. The Journal of Biological Chemistry, 283, 15280-15286.

  8. 8. He, F. and Sun, Y.E. (2007) Glial cells more than support cells? The International Journal of Bio-chemistry & Cell Biology, 39, 661-665.

  9. 9. Nagelhus, E.A., Horio, Y., Inanobe, A., Fujita, A., Haug, F.M., Nielsen, S., Kurachi, Y. and Ottersen, O.P. (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia, 26, 47-54.

  10. 10. Nagelhus, E.A., Veruki, M.L., Torp, R., Haug, F.M., Laake, J.H., Nielsen, S., Agre, P. and Ottersen, O.P. (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: Polarized expression in Muller cells and fibrous astrocytes. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18, 2506-2519.

  11. 11. Kong, H., Fan, Y., Xie, J., Ding, J., Sha, L., Shi, X., Sun, X. and Hu, G. (2008) AQP4 knockout im-pairs proliferation, migration and neuronal differentiation of adult neural stem cells. Journal of Cell Science, 121, 4029-4036.

  12. 12. Nagelhus, E.A. and Ottersen, O.P. (2013) Physiological roles of aquaporin-4 in brain. Physiological Reviews, 93, 1543- 1562.

  13. 13. Haj-Yasein, N.N., Vindedal, G.F., Eilert-Olsen, M., Gundersen, G.A., Skare, O., Laake, P., Klungland, A., Thoren, A.E., Burkhardt, J.M., Ottersen, O.P. and Nagelhus, E.A. (2011) Glial-conditional deletion of aquaporin-4 (AQP4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proceedings of the National Academy of Sciences of the United States of America, 108, 17815-17820.

  14. 14. Medici, V., Frassoni, C., Tassi, L., Spreafico, R. and Garbelli, R. (2011) Aquaporin 4 expression in control and epileptic human cerebral cortex. Brain Research, 1367, 330-339.

  15. 15. Benfenati, V., Caprini, M., Dovizio, M., Mylonakou, M.N., Fer-roni, S., Ottersen, O.P. and Amiry-Moghaddam, M. (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 108, 2563- 2568.

  16. 16. Saadoun, S., Bell, B.A., Verkman, A.S. and Papado-poulos, M.C. (2008) Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain: A Journal of Neurology, 131, 1087-1098.

  17. 17. Papadopoulos, M.C., Manley, G.T., Krishna, S. and Verkman, A.S. (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18, 1291-1293.

  18. 18. Mobasheri, A. and Marples, D. (2004) Expression of the AQP-1 water channel in normal human tissues: A semiquantitative study using tissue microarray technology. American Journal of Physiology Cell Physiology, 286, C529-C537.

  19. 19. Saadoun, S., Papadopoulos, M.C., Davies, D.C., Bell, B.A. and Krishna, S. (2002) Increased aquaporin-1 water channel expression in human brain tumours. British Journal of Cancer, 87, 621-623.

  20. 20. Oshio, K., Watanabe, H., Song, Y., Verkman, A.S. and Manley, G.T. (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19, 76-78.

  21. 21. Longatti, P.L., Basaldella, L., Orvieto, E., Fiorindi, A. and Carteri, A. (2004) Choroid plexus and aquaporin-1: A novel explanation of cerebrospinal fluid production. Pediatric Neurosurgery, 40, 277-283.

  22. 22. Tait, M.J., Saadoun, S., Bell, B.A. and Papadopoulos, M.C. (2008) Water movements in the brain: Role of aquaporins. Trends in Neurosciences, 31, 37-43.

  23. 23. Vacca, A., Ribatti, D., Roccaro, A.M., Frigeri, A. and Dammacco, F. (2001) Bone marrow angiogenesis in patients with active multiple myeloma. Seminars in Oncology, 28, 543-550.

  24. 24. Tomas-Camardiel, M., Venero, J.L., Herrera, A.J., De Pablos, R.M., Pintor-Toro, J.A., Machado, A. and Cano, J. (2005) Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascular and parenchymal astrocytes: Protective effect by estradiol treatment in ovariectomized animals. Journal of Neuroscience Research, 80, 235-246.

  25. 25. Fischbarg, J. (2012) Water channels and their roles in some ocular tissues. Molecular Aspects of Medicine, 33, 638- 641.

  26. 26. Tran, T.L., Bek, T., la Cour, M., Nielsen, S., Prause, J.U., Hamann, S. and Heegaard, S. (2014) Altered aquaporin expression in glaucoma eyes. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 122, 772-780.

  27. 27. Li, J., Patil, R.V. and Verkman, A.S. (2002) Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Investigative Ophthalmology & Visual Science, 43, 573-579.

  28. 28. Jarius, S. and Wildemann, B. (2012) “Noteomielite” accompanied by acute amaurosis (1844): An early case of neuromyelitis optica. Journal of the Neurological Sciences, 313, 182-184.

  29. 29. Jarius, S. and Wildemann, B. (2012) The case of the Marquis de Causan (1804): An early account of visual loss associated with spinal cord inflammation. Journal of Neurology, 259, 1354-1357.

  30. 30. Jarius, S. and Wildemann, B. (2011) An early case of neuromyelitis optica: On a forgotten report by Jacob Lockhart Clarke, FRS. Multiple Sclerosis, 17, 1384-1386.

  31. 31. Lennon, V.A., Wingerchuk, D.M., Kryzer, T.J., Pittock, S.J., Lucchinetti, C.F., Fujihara, K., Nakashima, I. and Weinshenker, B.G. (2004) A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. The Lancet, 364, 2106-2112.

  32. 32. Lennon, V.A., Kryzer, T.J., Pittock, S.J., Verkman, A.S. and Hinson, S.R. (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. The Journal of Experimental Medicine, 202, 473-477.

  33. 33. Hinson, S.R., Pittock, S.J., Lucchinetti, C.F., Roemer, S.F., Fryer, J.P., Kryzer, T.J. and Lennon, V.A. (2007) Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology, 69, 2221- 2231.

  34. 34. Ratelade, J., Bennett, J.L. and Verkman, A.S. (2011) Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. The Journal of Biological Chemistry, 286, 45156-45164.

  35. 35. Saadoun, S., Waters, P., Bell, B.A., Vincent, A., Verkman, A.S. and Papadopoulos, M.C. (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain: A Journal of Neurology, 133, 349-361.

  36. 36. Collongues, N. and de Seze, J. (2011) Current and future treatment approaches for neuromyelitis optica. Therapeutic Advances in Neurological Disorders, 4, 111-121.

  37. 37. Roemer, S.F., Parisi, J.E., Lennon, V.A., Benarroch, E.E., Lassmann, H., Bruck, W., Mandler, R.N., Weinshenker, B.G., Pittock, S.J., Wingerchuk, D.M. and Lucchinetti, C.F. (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain: A Journal of Neurology, 130, 1194-1205.

  38. 38. Misu, T., Fujihara, K., Kakita, A., Konno, H., Nakamura, M., Watanabe, S., Takahashi, T., Nakashima, I., Takahashi, H. and Itoyama, Y. (2007) Loss of aquaporin 4 in lesions of neuromyelitis optica: Distinction from multiple sclerosis. Brain: A Journal of Neurology, 130, 1224-1234.

  39. 39. Lucchinetti, C.F., Mandler, R.N., McGavern, D., Bruck, W., Gleich, G., Ransohoff, R.M., Trebst, C., Weinshenker, B., Wingerchuk, D., Parisi, J.E. and Lassmann, H. (2002) A role for humoral mechanisms in the patho-genesis of Devic’s neuromyelitis optica. Brain: A Journal of Neurology, 125, 1450-1461.

  40. 40. Wingerchuk, D.M., Lennon, V.A., Lucchinetti, C.F., Pittock, S.J. and Weinshenker, B.G. (2007) The spectrum of neuromyelitis optica. The Lancet Neurology, 6, 805-815.

  41. 41. Papadopoulos, M.C. and Verkman, A.S. (2012) Aquaporin 4 and neuromyelitis optica. The Lancet Neurology, 11, 535- 544.

  42. 42. Paul, F., Jarius, S., Aktas, O., Bluthner, M., Bauer, O., Appelhans, H., Franciotta, D., Bergamaschi, R., Littleton, E., Palace, J., Seelig, H.P., Hohlfeld, R., Vincent, A. and Zipp, F. (2007) Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Medicine, 4, e133.

  43. 43. Verkman, A.S., Phuan, P.W., Asavapanumas, N. and Tradtrantip, L. (2013) Biology of AQP4 and anti-AQP4 antibody: Therapeutic implications for NMO. Brain Pathology, 23, 684-695.

  44. 44. Tradtrantip, L., Zhang, H., Saadoun, S., Phuan, P.W., Lam, C., Papadopoulos, M.C., Bennett, J.L. and Verkman, A.S. (2012) Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Annals of Neurology, 71, 314- 322.

  45. 45. Tradtrantip, L., Zhang, H., Anderson, M.O., Saadoun, S., Phuan, P.W., Papadopoulos, M.C., Bennett, J.L. and Verkman, A.S. (2012) Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 26, 2197-2208.

  46. 46. Tradtrantip, L., Ratelade, J., Zhang, H. and Verkman, A.S. (2013) Enzymatic deglycosylation converts pathogenic neuromyelitis optica anti-aquaporin-4 immunoglobulin G into therapeutic antibody. Annals of Neurology, 73, 77-85.

  47. 47. Lu, D.C., Zhang, H., Zador, Z. and Verkman, A.S. (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 22, 3216- 3223.

  48. 48. Li, J. and Verkman, A.S. (2001) Impaired hearing in mice lacking aquaporin-4 water channels. The Journal of Biological Chemistry, 276, 31233-31237.

  49. 49. Huang, D., Chen, P., Chen, S., Nagura, M., Lim, D.J. and Lin, X. (2002) Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea. Hearing Research, 165, 85-95.

  50. 50. Kitahara, T., Fukushima, M., Uno, Y., Mishiro, Y. and Kubo, T. (2003) Up-regulation of cochlear aquaporin-3 mRNA expression after intra-endolymphatic sac application of dexamethasone. Neurological Research, 25, 865-870.

  51. 51. Mhatre, A.N., Jero, J., Chiappini, I., Bolasco, G., Barbara, M. and Lalwani, A.K. (2002) Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Meniere’s disease. Hearing Research, 170, 59-69.

  52. 52. Oshio, K., Binder, D.K., Yang, B., Schecter, S., Verkman, A.S. and Manley, G.T. (2004) Expression of aquaporin water channels in mouse spinal cord. Neuroscience, 127, 685-693.

  53. 53. Stoodley, M.A., Jones, N.R. and Brown, C.J. (1996) Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Research, 707, 155-164.

  54. 54. Zhang, H. and Verkman, A.S. (2010) Aquaporin-1 tunes pain perception by interaction with Na(v)1.8 Na+ channels in dorsal root ganglion neurons. The Journal of Biological Chemistry, 285, 5896-5906.

  55. 55. Butler, T.L., Au, C.G., Yang, B., Egan, J.R., Tan, Y.M., Hardeman, E.C., North, K.N., Verkman, A.S. and Winlaw, D.S. (2006) Cardiac aquaporin expression in humans, rats, and mice. American Journal of Physiology Heart and Circulatory Physiology, 291, H705-H713.

  56. 56. Verkman, A.S. (2002) Aquaporin water channels and endothelial cell function. Journal of Anatomy, 200, 617-627.

  57. 57. Rutkovskiy, A., Stenslokken, K.O., Mariero, L.H., Skrbic, B., Amiry-Moghaddam, M., Hillestad, V., Valen, G., Perreault, M.C., Ottersen, O.P., Gullestad, L., Dahl, C.P. and Vaage, J. (2012) Aquaporin-4 in the heart: Expression, regulation and functional role in ischemia. Basic Research in Cardiology, 107, 280.

  58. 58. Verkman, A.S., Matthay, M.A. and Song, Y. (2000) Aquaporin water channels and lung physiology. American Journal of Physiology Lung Cellular and Molecular Physiology, 278, L867-L879.

  59. 59. Nielsen, S., King, L.S., Christensen, B.M. and Agre, P. (1997) Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. The American Journal of Physiology, 273, C1549-C1561.

  60. 60. Borok, Z. and Verkman, A.S. (2002) Lung edema clearance: 20 years of progress: Invited review: Role of aquaporin water channels in fluid transport in lung and airways. Journal of Applied Physiology, 93, 2199-2206.

  61. 61. Wang, K., Feng, Y.L., Wen, F.Q., Chen, X.R., Ou, X.M., Xu, D., Yang, J. and Deng, Z.P. (2007) Decreased expression of human aquaporin-5 correlated with mucus overproduction in airways of chronic obstructive pulmonary disease. Acta Pharmacologica Sinica, 28, 1166-1174.

  62. 62. Bai, C., Fukuda, N., Song, Y., Ma, T., Matthay, M.A. and Verkman, A.S. (1999) Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. The Journal of Clinical Investigation, 103, 555-561.

  63. 63. Ma, T., Fukuda, N., Song, Y., Matthay, M.A. and Verkman, A.S. (2000) Lung fluid transport in aquaporin-5 knockout mice. The Journal of Clinical Investigation, 105, 93-100.

  64. 64. She, J., Bi, J., Tong, L., Song, Y. and Bai, C. (2013) New insights of aquaporin 5 in the pathogenesis of high altitude pulmonary edema. Diagnostic Pathology, 8, 193.

  65. 65. Jin, Y., Yu, G., Peng, P., Zhang, Y. and Xin, X. (2013) Down-regulated expression of AQP5 on lung in rat DIC model induced by LPS and its effect on the development of pulmonary edema. Pulmonary Pharmacology & Therapeutics, 26, 661-665.

  66. 66. Nejsum, L.N. (2005) The renal plumbing system: Aquaporin water channels. Cellular and Molecular Life Sciences: CMLS, 62, 1692-1706.

  67. 67. Verkman, A.S. (2008) Mammalian aquaporins: Diverse physiological roles and potential clinical significance. Expert Reviews in Molecular Medicine, 10, e13.

  68. 68. Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F. and Sasaki, S. (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature, 361, 549-552.

  69. 69. Morishita, Y., Matsuzaki, T., Hara-chikuma, M., Andoo, A., Shimono, M., Matsuki, A., Kobayashi, K., Ikeda, M., Yamamoto, T., Verkman, A., Kusano, E., Ookawara, S., Takata, K., Sasaki, S. and Ishibashi, K. (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Molecular and Cellular Biology, 25, 7770-7779.

  70. 70. Devuyst, O. and Yool, A.J. (2010) Aquaporin-1: New developments and perspectives for peritoneal dialysis. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 30, 135-141.

  71. 71. Marples, D., Knepper, M.A., Christensen, E.I. and Nielsen, S. (1995) Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. The American Journal of Physiology, 269, C655- C664.

  72. 72. Noda, Y. and Sasaki, S. (2005) Trafficking mechanism of water channel aquaporin-2. Biology of the Cell, 97, 885-892.

  73. 73. Nedvetsky, P.I., Tamma, G., Beulshausen, S., Valenti, G., Rosenthal, W. and Klussmann, E. (2009) Regulation of aquaporin-2 trafficking. Handbook of Experimental Pharmacology, 190, 133-157.

  74. 74. Wesche, D., Deen, P.M. and Knoers, N.V. (2012) Congenital nephrogenic diabetes insipidus: The current state of affairs. Pediatric Nephrology, 27, 2183-2204.

  75. 75. Tamarappoo, B.K., Yang, B. and Verkman, A.S. (1999) Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. The Journal of Biological Chemistry, 274, 34825-34831.

  76. 76. Sasaki, S. (2012) Aquaporin 2: From its discovery to molecular structure and medical implications. Molecular Aspects of Medicine, 33, 535-546.

  77. 77. Yang, B., Ma, T., Xu, Z. and Verkman, A.S. (1999) cDNA and genomic cloning of mouse aquaporin-2: Functional analysis of an orthologous mutant causing nephrogenic diabetes insipidus. Genomics, 57, 79-83.

  78. 78. Yang, B., Zhao, D., Qian, L. and Verkman, A.S. (2006) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. American Journal of Physiology Renal Physiology, 291, F465-F472.

  79. 79. Yang, B., Gillespie, A., Carlson, E.J., Epstein, C.J. and Verkman, A.S. (2001) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. The Journal of Biological Chemistry, 276, 2775- 2779.

  80. 80. Yang, B., Zhao, D. and Verkman, A.S. (2009) Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 23, 503-512.

  81. 81. Galizia, L., Pizzoni, A., Fernandez, J., Rivarola, V., Capurro, C. and Ford, P. (2012) Func-tional interaction between AQP2 and TRPV4 in renal cells. Journal of Cellular Biochemistry, 113, 580-589.

  82. 82. Hasler, U., Nunes, P., Bouley, R., Lu, H.A., Matsuzaki, T. and Brown, D. (2008) Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells. The Journal of Biological Chemistry, 283, 26643-26661.

  83. 83. Holmes, R.P. (2012) The role of renal water channels in health and disease. Molecular Aspects of Medicine, 33, 547- 552.

  84. 84. Chou, C.L., Ma, T., Yang, B., Knepper, M.A. and Verkman, A.S. (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. The American Journal of Physiology, 274, C549-C554.

  85. 85. Zhang, J., An, Y., Gao, J., Han, J., Pan, X., Pan, Y., Tie, L. and Li, X. (2012) Aquaporin-1 translocation and degradation mediates the water transportation mechanism of acetazolamide. PloS ONE, 7, e45976.

  86. 86. Ikeda, M., Beitz, E., Kozono, D., Guggino, W.B., Agre, P. and Yasui, M. (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. The Journal of Biological Chemistry, 277, 39873-39879.

  87. 87. Matsuzaki, T., Suzuki, T., Koyama, H., Tanaka, S. and Takata, K. (1999) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 47, 1275-1286.

  88. 88. Ikarashi, N., Kon, R., Iizasa, T., Suzuki, N., Hiruma, R., Suenaga, K., Toda, T., Ishii, M., Hoshino, M., Ochiai, W. and Sugiyama, K. (2012) Inhibition of aquaporin-3 water channel in the colon induces diarrhea. Biological & Pharmaceutical Bulletin, 35, 957-962.

  89. 89. Wang, K.S., Komar, A.R., Ma, T., Filiz, F., McLeroy, J., Hoda, K., Verkman, A.S. and Bastidas, J.A. (2000) Gastric acid secretion in aquaporin-4 knockout mice. American Journal of Physiology Gastrointestinal and Liver Physiology, 279, G448-G453.

  90. 90. Wang, K.S., Ma, T., Filiz, F., Verkman, A.S. and Bastidas, J.A. (2000) Colon water transport in transgenic mice lacking aquaporin-4 water channels. American Journal of Physiology Gastrointestinal and Liver Physiology, 279, G463- G470.

  91. 91. Elkjaer, M.L., Nejsum, L.N., Gresz, V., Kwon, T.H., Jensen, U.B., Frokiaer, J. and Nielsen, S. (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. American Journal of Physiology Renal Physiology, 281, F1047-F1057.

  92. 92. Matsuzaki, T., Tajika, Y., Ablimit, A., Aoki, T., Hagiwara, H. and Takata, K. (2004) Aquaporins in the digestive system. Medical Electron Microscopy: Official Journal of the Clinical Electron Microscopy Society of Japan, 37, 71-80.

  93. 93. Garcia, F., Kierbel, A., Larocca, M.C., Gradilone, S.A., Splinter, P., LaRusso, N.F. and Marinelli, R.A. (2001) The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. The Journal of Biological Chemistry, 276, 12147-12152.

  94. 94. Lebeck, J. (2014) Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. Journal of Molecular Endocrinology, 52, R165-R178.

  95. 95. McConnell, N.A., Yunus, R.S., Gross, S.A., Bost, K.L., Clemens, M.G. and Hughes Jr., F.M. (2002) Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology, 143, 2905- 2912.

  96. 96. Qu, F., Wang, F.F., Lu, X.E., Dong, M.Y., Sheng, J.Z., Lv, P.P., Ding, G.L., Shi, B.W., Zhang, D. and Huang, H.F. (2010) Altered aquaporin expression in women with polycystic ovary syndrome: Hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Human Re-production, 25, 1441-1450.

  97. 97. Ishibashi, K., Kuwahara, M., Gu, Y., Kageyama, Y., Tohsaka, A., Suzuki, F., Marumo, F. and Sasaki, S. (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. The Journal of Biological Chemistry, 272, 20782-20786.

  98. 98. Yeung, C.H. (2010) Aquaporins in spermatozoa and testicular germ cells: Identification and potential role. Asian Journal of Andrology, 12, 490-499.

  99. 99. Chen, Q. and Duan, E.K. (2011) Aquaporins in sperm osmoadaptation: An emerging role for volume regulation. Acta Pharmacologica Sinica, 32, 721-724.

  100. 100. Chen, Q., Peng, H., Lei, L., Zhang, Y., Kuang, H., Cao, Y., Shi, Q.X., Ma, T. and Duan, E. (2011) Aquaporin 3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration. Cell Research, 21, 922-933.

  101. 101. Moretti, E., Terzuoli, G., Mazzi, L., Iacoponi, F. and Collodel, G. (2012) Immunolocalization of aquaporin 7 in human sperm and its relationship with semen parameters. Systems Biology in Reproductive Medicine, 58, 129-135.

  102. 102. Tsukaguchi, H., Shayakul, C., Berger, U.V., Mackenzie, B., Devidas, S., Guggino, W.B., van Hoek, A.N. and Hediger, M.A. (1998) Molecular characterization of a broad selectivity neutral solute channel. The Journal of Biological Chemistry, 273, 24737-24743.

  103. 103. Pastor-Soler, N., Isnard-Bagnis, C., Herak-Kramberger, C., Sabolic, I., Van Hoek, A., Brown, D. and Breton, S. (2002) Expression of aquaporin 9 in the adult rat epididymal epithelium is modulated by androgens. Biology of Reproduction, 66, 1716-1722.

  104. 104. Hermo, L., Krzeczunowicz, D. and Ruz, R. (2004) Cell specificity of aquaporins 0, 3, and 10 expressed in the testis, efferent ducts, and epididymis of adult rats. Journal of Andrology, 25, 494-505.

  105. 105. Sougrat, R., Morand, M., Gondran, C., Barre, P., Gobin, R., Bonte, F., Dumas, M. and Verbavatz, J.M. (2002) Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. The Journal of Investigative Dermatology, 118, 678-685.

  106. 106. Sugiyama, Y., Ota, Y., Hara, M. and Inoue, S. (2001) Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochimica et Biophysica Acta, 1522, 82-88.

  107. 107. Hara, M. and Verkman, A.S. (2003) Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 7360-7365.

  108. 108. Olsson, M., Broberg, A., Jernas, M., Carlsson, L., Rudemo, M., Suurkula, M., Svensson, P.A. and Benson, M. (2006) Increased expression of aquaporin 3 in atopic eczema. Allergy, 61, 1132-1137.

  109. 109. Voss, K.E., Bollag, R.J., Fussell, N., By, C., Sheehan, D.J. and Bollag, W.B. (2011) Abnormal aquaporin-3 protein expression in hyperproliferative skin disorders. Archives of Dermatological Research, 303, 591-600.

  110. 110. Kishida, K., Kuriyama, H., Funahashi, T., Shimomura, I., Kihara, S., Ouchi, N., Nishida, M., Nishizawa, H., Matsuda, M., Takahashi, M., Hotta, K., Nakamura, T., Yamashita, S., Tochino, Y. and Matsuzawa, Y. (2000) Aquaporin adipose, a putative glycerol channel in adipocytes. The Journal of Biological Chemistry, 275, 20896-20902.

  111. 111. Laforenza, U., Scaffino, M.F. and Gastaldi, G. (2013) Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PloS ONE, 8, e54474.

  112. 112. Frigeri, A., Nicchia, G.P., Balena, R., Nico, B. and Svelto, M. (2004) Aquaporins in skeletal muscle: Reassessment of the functional role of aquaporin-4. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18, 905-907.

  113. 113. Yang, B., Verbavatz, J.M., Song, Y., Vetrivel, L., Manley, G., Kao, W.M., Ma, T. and Verkman, A.S. (2000) Skeletal muscle function and water permeability in aquaporin-4 deficient mice. American Journal of Physiology Cell Physiology, 278, C1108-C1115.

  114. 114. Basco, D., Blaauw, B., Pisani, F., Sparaneo, A., Nicchia, G.P., Mola, M.G., Reggiani, C., Svelto, M. and Frigeri, A. (2013) AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations. PloS ONE, 8, e58712.

  115. 115. Hagiwara, K., Shinozaki, T., Matsuzaki, T., Takata, K. and Takagishi, K. (2013) Immunolocalization of water channel aquaporins in human knee articular cartilage with intact and early degenerative regions. Medical Molecular Morphology, 46, 104-108.

  116. 116. Iatridis, J.C., MacLean, J.J., O’Brien, M. and Stokes, I.A. (2007) Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine, 32, 1493-1497.

期刊菜单