Journal of Organic Chemistry Research
Vol. 09  No. 02 ( 2021 ), Article ID: 43175 , 6 pages
10.12677/JOCR.2021.92002

电化学催化芳基甲酸脱羧合成多取代三氮唑化合物

许甲喆,周烨,曾东文,何永辉*

云南民族大学民族医药学院,云南 昆明

收稿日期:2021年4月14日;录用日期:2021年6月10日;发布日期:2021年6月17日

摘要

三氮唑类化合物具有抗炎、抗肿瘤等多种重要的生理活性,合成该类化合物一直是研究热点。本文以四丁基碘化铵为媒介,在电化学条件下实现了芳基甲酸脱羧活化,并与1,3-二取代-1,2,4-三氮唑类化合物发生脱氢交叉偶联反应,以45%~65%的产率得到了1,3,5-三取代-1,2,4-三氮唑类化合物。采用核磁共振和质谱等手段对产物结构进行表征,并提出了可能的反应机理。

关键词

三氮唑,电催化,脱羧

Electrochemical Oxidative Decarbonylation of Aromatic Formic Acid for Synthesis of 1,3,5-Trisubstituted 1H-1,2,4-Triazoles

Jiazhe Xu, Ye Zhou, Dongwen Zeng, Yonghui He*

School of Ethnic Medicine, Yunnan Minzu University, Kunming Yunnan

Received: Apr. 14th, 2021; accepted: Jun. 10th, 2021; published: Jun. 17th, 2021

ABSTRACT

Triazoles have many important physiological activities such as anti-inflammatory and anti-tumor. Thus, synthesis of these compounds has been a research hotspot. Triazoles have many important physiological activities such as anti-inflammatory and anti-tumor. Thus, synthesis of these compounds has been a research hotspot. The electrocatalytic decarbonylation of benzoic acid to construct 1,3,5-trisubstituted-1,2,4-triazoles with 1,3-bisubstituted-1,2,4-triazoles was realized in 45%~65% yield at room temperature and without oxidant. The products were confirmed by 1H NMR, 13C NMR, MS and HRMS. The reaction mechanism is proposed.

Keywords:Triazoles, Electrocatalysis, Decarbonylation

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

1,2,4-三氮唑化合物为含三个氮原子的五元杂环结构,具有抗菌、抗炎、抗肿瘤、抗结核等重要的生理活性 [1] [2] [3] [4] [5]。同时,也是合成药物(马拉维若、三唑仑等)的重要砌块 [6] [7]。除此之外,三氮唑化合物还在配位化学、材料化学和天然产物中有广泛的应用。比如,最近的研究表明,1,2,4-三氮唑作为配体,与Ir3+配位后以高的量子产率发射蓝光,显示在有机发光二极管中,有较好的应用潜力 [8]。

合成1,2,4-三氮唑一直是研究热点,合成方法包括传统的佩利扎里反应、过渡金属催化脱氢偶联和过氧化物催化等 [9] [10] [11] [12]。最近Habtamu等人以四丁基碘化铵为媒介,在高温条件下,利用氧化剂叔丁基过氧化氢成功地实现了芳酮脱羰基活化,进攻1,3-二取代三唑,得到了1,3,5-三取代-1,2,4-三氮唑化合物 [13]。然而,这些报道的催化体系存在使用化学当量的氧化剂、过渡金属及苛刻的反应条件等不足。

电化学催化反应利用电子作为催化剂,避免使用氧化剂、金属等,在温和条件下,化学家们开发出了许多利用碳氢活化策略实现的电化学催化反应 [14] [15] [16]。本课题组采用电化学催化方法,实现了碳氢活化成功合成咪唑等杂环化合物 [17]。本文采用电化学催化芳基羧酸脱羧活化,成功实现了三氮唑杂环的碳氢活化交叉偶联反应,高选择性的构建了1,3,5-三取代的-1,2,4-三氮唑化合物。该方法具有操作简单,绿色环保等特点。

2. 实验部分

2.1. 主要仪器与试剂

Bruker-400型核磁共振仪(CDCl3为溶剂,TMS为内标)、BrukermicroTOF-Q II型高分辨质谱仪(国布鲁克公司),电化学合成仪ElectraSyn2.0 (德国IKA)。

柱分离用200~300目硅胶、溶剂和试剂均为市售分析纯;乙腈(分析纯,南京化学试剂股份有限公司);试验所用芳基甲酸1,3-二取代1,2,4-三氮唑类化合物、四丁基碘化铵均购自北京伊诺凯科技有限公司。

2.2. 实验方法

于25 mL的三颈圆底烧瓶中加入22 mg苯甲酸1 (0.2 mmol),44 mg三氮唑2 (0.2 mmol),36.9 mg四丁基碘化铵(0.1 mmol),15 ml乙腈,混合均匀,15 mm × 15 mm铂片为正极和负极,室温下以9 mA电流通电5小时。反应完全后,混合物减压脱溶,得残余物,柱层析(V(石油醚):V(乙酸乙酯) = 60:1) 纯化得化合物3。

1,3,5-三苯基-1-氢-1,2,4-三氮唑(3a):淡黄色固体,65%收率。1H NMR (400 MHz, CDCl3) δ: 8.27 (d, J = 7.2 Hz, 2H), 7.57~7.60 (m, 2H), 7.48~7.53 (m, 2H), 7.43~7.47 (m, 6H), 7.43~7.45 (m, 1H), 7.36~7.39 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 161.9, 154.7, 138.3, 130.7, 130.0, 129.3, 129.0, 128.9, 128.8, 128.5, 128.0, 126.6, 125.4; LRMS (EI 70 eV) m/z (%): 297 (M+, 100); HRMS m/z (ESI) calcd for C20H16N3 (M + H)+ 298.1338, found 298.1335。

1,3-二苯基-5-(对-甲苯基)-1-氢-1,2,4-三氮唑(3b):淡黄色固体,62%收率。1H NMR (400 MHz, CDCl3) δ: 8.27 (t, J = 6.8 Hz, 2H), 7.42~7.48 (m, 10H), 7.16 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.8, 154.8, 140.1, 138.4, 130.8, 129.3, 129.2, 128.9, 128.8, 128.7, 128.5, 126.5, 125.4, 125.1, 21.3; LRMS (EI 70 eV) m/z (%): 311 (M+, 100); HRMS m/z (ESI) calcd for C21H18N3 (M + H)+ 312.1495, found 312.1488。

5-(对-甲氧苯基)-1,3-二苯基-1-氢-1,2,4-三氮唑(3c):淡黄色固体,60%收率;1H NMR (400 MHz, CDCl3) δ: 8.21~8.23 (m, 2H), 7.38~7.48 (m, 10H), 6.83 (d, J = 9.2 Hz, 2H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 160.7, 159.8, 152.6, 136.4, 130.8, 129.4, 128.3, 128.2, 127.6, 127.5, 125.5, 124.4, 118.3, 112.9, 54.2; HRMS m/z (ESI) calcd for C21H18N3O (M + H)+ 328.1444, found 328.1449。

5-(4-氯苯基)-1,3-二苯基-1-氢-1,2,4-三氮唑(3d):淡黄色固体,收率55%。1H NMR (400 MHz, CDCl3) δ: 8.23 (dd, J = 8.0 Hz, 1.6 Hz, 2H), 7.40~7.52 (m, 10H), 7.32~7.35 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 162.0, 153.7, 138.1, 136.2, 130.5, 130.2, 129.5, 129.5, 129.0, 128.8, 128.6, 126.5, 126.4, 125.4; LRMS (EI 70 eV) m/z (%): 331 (M+, 100); HRMS m/z (ESI) calcd for C20H15ClN3 (M + H)+ 332.0949, found 332.0955。

5-(4-氟苯基)-1,3-二苯基-1-氢-1,2,4-三氮唑(3e),淡黄色固体,54%收率;1HNMR (400 MHz, CDCl3) δ: 8.13 (dd, J = 8.4 Hz, 1.6 Hz, 2H), 7.45 (dd, J = 8.8 Hz, 5.2 Hz, 2H), 7.30~7.37 (m, 8H), 6.95 (t, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 164.8 (d, J = 249.7 Hz), 162.2, 154.1, 138.4, 131.3, 131.2, 130.9, 129.7 (d, J = 3.3 Hz), 129.2, 128.8, 126.8, 125.7, 124.4 (d, J = 3.5 Hz), 116.1 (d, J = 21.8 Hz); LRMS (EI 70 eV) m/z (%): 315 (M+, 100); HRMS m/z (ESI) calcd for C20H15FN3 (M + H)+ 316.1244, found 316.1249。

1,3-二苯基-5-(2-噻吩)-1-氢-1,2,4-三唑(3f):白色油状物,收率61%。1H NMR (400 MHz, CDCl3) δ: 8.21 - 8.23 (m, 2H), 7.51 (s, 5H), 7.40~7.47 (m, 3H), 7.36 (dd, J = 4.8 Hz, 0.8 Hz, 1H), 7.05 (dd, J = 3.6 Hz, 0.8 Hz, 1H), 6.93 (dd, J = 5.2 Hz, 4.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 161.8, 150.1, 137.9, 130.5, 129.8, 129.5, 129.4, 128.8, 128.7, 128.5, 127.5, 126.6, 126.6, 125.3; LRMS (EI 70 eV) m/z (%): 303 (M+, 100); HRMS m/z (ESI) calcd for C18H14N3S (M + H)+ 304.0902, found 304.0907。

5-(naphthalen-1-yl)-1,3-二苯基-1-氢-1,2,4-三氮唑(3g):棕红色油状物,收率45%; 1H NMR (400 MHz, CDCl3) δ: 8.31~8.33 (m, 2H), 7.94 (dd, J = 12.8 Hz, 8.0 Hz, 2H), 7.87 (dd, J = 6.8 Hz, 2.0 Hz, 1H), 7.39~7.51 (m, 7H), 7.28~7.30 (m, 2H), 7.20~7.23 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 162.0, 153.7, 137.8, 133.6, 131.5, 130.7, 130.6, 129.4, 129.0, 128.9, 128.6, 128.3, 128.0, 127.2, 126.6, 126.5, 126.0, 125.3, 124.9, 123.9; LRMS (EI 70 eV) m/z (%): 347 (M+, 100); HRMS m/z (ESI) calcd for C24H18N3 (M + H)+ 348.1495, found 348.1490。

3. 结果与讨论

3.1. 反应条件的筛选

以苯甲酸1a (0.2 mmol)和三氮唑2 (0.2 mmol)为底物,以四丁基碘化铵(0.1 mmol)为催化媒介的反应为模型,我们探讨了催化媒介的类型、电流的大小、溶剂的种类以及反应温度对模型反应产率的影响(表1)。

首先探讨催化媒介对反应的影响(表1,entries 1~5)。从表中可以看出,无催化媒介条件下不能发生反应;使用碘化铵、溴化铵均不如四丁基碘化铵的产率高;增加催化媒介的量不能提高反应产率。对溶剂进行了筛选,发现溶剂甲醇、乙醇和DMSO均会使产率有所下降(表1,entries 6~8)。随后对电流进行筛选,研究表明没有电流时,反应不能发生;电流为6mA和12mA时,产率均有所下降,说明9 mA电流为最合适的电流(表1,entries 9~11)。最后,对反应温度进行了考察(表1,entries 12~13),结果表明提高反应温度不能使产率提高。因此,此反应的最优反应条件为:以四丁基碘化铵为媒介、9 mA电流、乙腈为溶剂,室温下反应5小时。

Table 1. Optimization of reaction conditions

表1. 反应条件的优化

3.2. 目标产物的普适性研究

根据上述建立的最优反应条件(表1,Entries 2),得到了中等产率的目标化合物3a-3g,我们对该反应的底物普适性进行了研究,结果如表2所示。从表中可以看出,芳基羧基1a-1e的苯环上无论带有强吸电子基团还是给电子基团,都能很好的发生脱羧活化,实现三氮唑杂环的碳氢活化交叉偶联反应,以中等产率得到目标化合物。此外,芳环扩展到噻吩或者萘环,反应均能较好的发生。因此,该反应体系中芳基羧酸具有较好的底物普适性。

Table 2. Investigation of substrate scope

表2. 底物普适性研究

3.3. 反应机理分析

以模型反应为研究对象,在最优反应条件下对反应机理进行探讨。当反应中加入0.2 mmol自由基抑制剂2,2,6,6-四甲基哌啶氮氧化物时,反应受到抑制。根据文献 [13] 提出图1所示的反应机理:电化学条件下,碘负离子在阳极被氧化成碘自由基,该自由基进攻苯甲酸,导致苯甲酸脱氢,并进一步脱羰基,生成苯基自由基。然后,苯基自由基进攻二取代–三氮唑上的碳氢键,生成自由基中间体,经单电子转移并脱氢后得到目标化合物3a。

Figure 1. Plausible mechanism for synthesis of compound 3a

图1. 合成化合物3a可能的反应机理

4. 结论

采用碘盐媒介的电化学催化芳基脱羧活化,在室温下实现了1,3-二取代-1,2,4-三氮唑的碳氢活化交叉偶联反应,得到了1,3,5-三取代-1,2,4-三氮唑化合物。目标化合物用1HNMR、13CNMR、HRMS等进行了结构表征。以特征目标产物例,分析了其波谱数据及可能的反应机理。该反应具有操作简便和环境友好等特点。

文章引用

许甲喆,周 烨,曾东文,何永辉. 电化学催化芳基甲酸脱羧合成多取代三氮唑化合物
Electrochemical Oxidative Decarbonylation of Aromatic Formic Acid for Synthesis of 1,3,5-Trisubstituted 1H-1,2,4-Triazoles[J]. 有机化学研究, 2021, 09(02): 7-12. https://doi.org/10.12677/JOCR.2021.92002

参考文献

  1. 1. Gabor, M. (1986) Anti-Inflammatory and Anti-Allergic Properties of Flavonoids. Progress in Clinical and Biological Research, 213, 471-480.

  2. 2. Singh, G., Singh, L. and Ishar, M.P.S. (2002) 2-(N-Methylanilino)-3-Formylchromone—A Versatile Synthon for Incorporation of Chromone Moiety in a Variety of Heterocyclic Systems and Macrocycles through Reactions with Bifunctional Nucleophiles. Tetrahedron, 58, 7883-7890. https://doi.org/10.1016/S0040-4020(02)00908-0

  3. 3. Martens, S. and Mithofer, A. (2005) Flavones and Flavone Synthases. Phytochemistry, 66, 2399-2407. https://doi.org/10.1016/j.phytochem.2005.07.013

  4. 4. Chohan, Z.H., Shaikh, A.U., Rauf, A. and Supuran, C.T. (2006) Antibacterial, Antifungal and Cytotoxic Properties of Novel N-Substituted Sulfonamides from 4-Hydroxycoumarin. Journal of Enzyme Inhibition and Medicinal Chemistry, 21, 741-748. https://doi.org/10.1080/14756360600810340

  5. 5. Djemgou, P.C., Gatsing, D., Tchuendem, M., Ngadjui, B.T., Tane, P., Ahmed, A.A., Gamal-Eldeen, A.M., Adoga, G.I., Hirata, T. and Mabry, T.J. (2006) Antitumor and Immunostimulatory Activity of Two Chromones and Other Constituents from Cassia Petersiana. Natural Product Communications, 1, 961-968. https://doi.org/10.1177/1934578X0600101109

  6. 6. Kuroda, M., Uchida, S., Watanabe, K. and Mimaki, Y. (2009) Chromones from the Tubers of Eranthis Cilicica and Their Antioxidant Activity. Phytochemistry, 70, 288-293. https://doi.org/10.1016/j.phytochem.2008.12.002

  7. 7. Sandhya, M.B. (2007) Synthesis, Characterization and Pharmacological Activities of Coumarin Devivatives. International Journal of Chemical and Pharmaceutical Sciences, 11, 16-25.

  8. 8. Park, H.J., Kim, J.N., Yoo, H.-J., Wee, K.-R., Kang, S.O., Cho, D.W. and Yoon, U.C. (2013) Rational Design, Synthesis, and Characterization of Deep Blue Phosphorescent Ir(III) Complexes Containing (4’-Substituted-2’-Pyridyl)-1,2,4-Triazole Ancillary Ligands. The Journal of Organic Chemistry, 78, 8054-8064. https://doi.org/10.1021/jo4012514

  9. 9. Zhang, C., Liang, Z., Jia, X., Wang, M., Zhang, G. and Hu, M.-L. (2020) A Practical Base Mediated Synthesis of 1,2,4-Triazoles Enabled by a Deamination Annulation Strategy. Chemical Communications, 56, 14215-14218. https://doi.org/10.1039/D0CC05828A

  10. 10. Yan, M., Ma, R., Chen, R., Wang, L., Wang, Z. and Ma, Y. (2020) Synthesis of 1,2-Dihydro-1,3,5-Triazine Derivatives via Cu(ii)-Catalyzed C(sp3)–H Activation of N,N-Dimethylethanolamine with Amidines. Chemical Communications, 56, 10946-10949. https://doi.org/10.1039/D0CC03820B

  11. 11. Zhang, L., Tang, D., Gao, J., Wang, J., Wu, P., Meng, X. and Chen, B. (2016) Direct Access to 1,3,5-Trisubstituted 1H-1,2,4-Triazoles from N-Phenylbenzamidines via Copper-Catalyzed Diamination of Aryl Nitriles. Synthesis, 48, 3924-3930. https://doi.org/10.1055/s-0035-1562490

  12. 12. Liew, S.K., Holownia, A., Tilley, A.J., Carrera, E.I., Seferos, D.S. and Yudin, A.K. (2016) A Study of Boratriazaroles: An Underdeveloped Class of Heterocycles. The Journal of Organic Chemistry, 81, 10444-10453. https://doi.org/10.1021/acs.joc.6b01565

  13. 13. Agisho, H.A., Esatu, H., Hairat, S. and Zaki, M. (2020) TBHP/TBAI–Mediated Simple and Efficient Synthesis of 3,5-Disubstituted and 1,3,5-Trisubstituted 1H-1,2,4-Triazoles via Oxidative Decarbonylation of Aromatic Aldehydes and Testing for Antibacterial Activities. Tetrahedron Letters, 61, Article ID: 151989. https://doi.org/10.1016/j.tetlet.2020.151989

  14. 14. Li, C.-J. (2009) Cross-dehydrogenative coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations. Accounts of Chemical Research, 42, 335-344. https://doi.org/10.1021/ar800164n

  15. 15. Yan, M., Kawamata, Y. and Baran, P.S. (2017) Synthetic Organic Electrochemical Methods since 2000: On the Verge of a Renaissance. Chemical Reviews, 117, 13230-13319. https://doi.org/10.1021/acs.chemrev.7b00397

  16. 16. Xiong, P. and Xu, H.-C. (2019) Chemistry with Electrochemically Generated N-Centered Radicals. Accounts of Chemical Research, 52, 3339-3350. https://doi.org/10.1021/acs.accounts.9b00472

  17. 17. Zeng, L., Li, J., Gao, J., Huang, X., Wang, W., Zheng, X., Gu, L., Li, G., Zhang, S. and He, Y. (2020) An Electrochemical Oxidative Multicomponent Cascade Annulation of Ketones and Amines Used to Produce Imidazoles. Green Chemistry, 22, 3416-3420. https://doi.org/10.1039/D0GC00375A

  18. NOTES

    *通讯作者。

期刊菜单