﻿ 广义Ramanujan常数R(a,c-a)的级数展开 Series Expansion of Generalized Ramanujan Constant R(a,c-a)

Pure Mathematics
Vol. 09  No. 06 ( 2019 ), Article ID: 31735 , 6 pages
10.12677/PM.2019.96098

Series Expansion of Generalized Ramanujan Constant $R\left(a,c-a\right)$

Xiaoyu Wang1, Peigui Zhou2, Fei Wang1*

1Teaching Section of Mathematics, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou Zhejiang

2Keyi College of Zhejiang Sci-Tech University, Hangzhou Zhejiang

Received: Jul. 21st, 2019; accepted: Jul. 31st, 2019; published: Aug. 16th, 2019

ABSTRACT

In this paper, the authors present several kinds of series expansion expressions of generalized Ramanujan constant $R\left(a,c-a\right)=-2\gamma -\psi \left(a\right)-\psi \left(c-a\right)$ by the nth order derivative of $\psi \left(x\right)$ . By these results, some known results about $R\left(a,c-a\right)$ can be easily improved.

Keywords:Generalized Ramanujan Constant, Psi Function, Series Expansion

1浙江机电职业技术学院数学教研室，浙江 杭州

2浙江理工大学科技与艺术学院，浙江 杭州

1. 引言

$\Gamma \left(x\right)={\int }_{0}^{\infty }{t}^{x-1}{\text{e}}^{-t}\text{d}t,B\left(x,y\right)=\frac{\Gamma \left(x\right)\Gamma \left(y\right)}{\Gamma \left(x+y\right)},\psi \left(x\right)=\frac{{\Gamma }^{\prime }\left(x\right)}{\Gamma \left(x\right)}$ (1.1)

$\gamma =\underset{n\to \infty }{\mathrm{lim}}\left[\sum _{k=1}^{n}\frac{1}{k}-\mathrm{log}n\right]=\text{0}\text{.57721566}\cdots$ ，是Euler-Mascheroni常数，则

(1.2)

(1.3)

,

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

.

2. 主要结果

(2.1)

,(2.2)

.

, (2.3)

3. 主要结果的证明

，则，且

,

,

(3.1)

(3.2)

(3.3)

.

(3.4)

,

,

(3.5)

.

(3.6)

(3.7)

(3.8)

.

(3.9)

Series Expansion of Generalized Ramanujan Constant R(a,c-a)[J]. 理论数学, 2019, 09(06): 749-754. https://doi.org/10.12677/PM.2019.96098

1. 1. Abramwitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York, 253-294.

2. 2. Qiu, S.L. and Vuorinen, M. (2005) Special Functions in Geometric Function Theory. In: Kühnau, R., Ed., Handbook of Complex Analysis: Geometric Function Theory, Elsevier, Amsterdam, 621-659.
https://doi.org/10.1016/S1874-5709(05)80018-6

3. 3. Anderson, G.D., Vamanamurthy, M.K. and Vuorinen, M. (1997) Con-formal Invariants, Inequalities, and Quasiconformal Maps. John Wiley & Sons, New York, 32-47.

4. 4. Qiu, S.L. and Vuorinen, M. (2005) Some Properties of the Gamma and Psi Functions with Applications. Mathematics of Computation, 74, 723-742.
https://doi.org/10.1090/S0025-5718-04-01675-8

5. 5. Anderson, G.D., Barnard, R.W., Richards, K.C., Vamanamurthy, M.K. and Vuorinen, M. (1995) Inequalities for Zero-Balanced Hypergeometric Functions. Transactions of the American Mathematical Society, 347, 1713-1723.
https://doi.org/10.1090/S0002-9947-1995-1264800-3

6. 6. Qiu, S.L. and Feng, B.P. (2007) Some Properties of the Ramanujan Constant. Journal of Hangzhou Dianzi University, 27, 88-91.

7. 7. Zhou, P.G., Qiu, S.L., Tu, G.Y., et al. (2010) Some Properties of the Ramanujan Constant. Journal of Zhejiang Sci-Tech University, 27, 835-841.

8. 8. Wang, M.K., Chu, Y.M. and Qiu, S.L. (2015) Sharp Bounds for Generalized Elliptic Integrals of the First Kind. Journal of Mathematical Analysis and Applications, 429, 744-757.

9. NOTES

*通讯作者。