Material Sciences
Vol. 10  No. 11 ( 2020 ), Article ID: 38874 , 5 pages
10.12677/MS.2020.1011110

Te/Pb0.985Mn0.015Te异质结生长行为研究

唐曙锋,潘媛媛,王子龙,周佩聪,牛逸潇,郑双羽,姚育鹏,王舒凯,吴青书,严正博,吴海飞*

绍兴文理学院物理系,浙江 绍兴

收稿日期:2020年11月6日;录用日期:2020年11月20日;发布日期:2020年11月27日

摘要

研究金属与PbMnTe薄膜界面的形成机理及结构特性对PbMnTe功能器件的应用具有重要的意义。本文利用分子束外延在BaF2(111)基底上制备了高质量Pb0.985Mn0.015Te单晶薄膜,在此基础上,系统研究了Te在Pb0.985Mn0.015Te单晶薄膜表面的生长行为。结果表明当在Pb0.985Mn0.015Te薄膜表面沉积一层Te时,Te将会跟最表面的Pb结合形成原子层平整度表面;当沉积的Te薄膜厚度大于1 ML时,Te在Pb0.985Mn0.015Te薄膜螺旋台阶边缘成核形成Te团簇,随着沉积厚度的增加,这些Te团簇不断长大,之后相互融合形成绕着台阶线盘旋的连续的螺旋线状Te岛。

关键词

分子束外延,薄膜,异质结,PbMnTe

Study on the Growth Behavior of Te/Pb0.985Mn0.015Te Heterojunction

Shufeng Tang, Yuanyuan Pan, Zilong Wang, Peicong Zhou, Yixiao Niu, Shuangyu Zheng, Yupeng Yao, Shukai Wang, Qingshu Wu, Zhengbo Yan, Haifei Wu*

Department of Physics, Shaoxing University, Shaoxing Zhejiang

Received: Nov. 6th, 2020; accepted: Nov. 20th, 2020; published: Nov. 27th, 2020

ABSTRACT

It is of great significance for the application of PbMnTe functional devices to study the formation mechanism and structure characteristics of metal-PbMnTe thin film interface. In this paper, a high quality Pb0.985Mn0.015Te crystalline thin film was prepared on BaF2(111) substrate by molecular beam epitaxy. On this basis, the growth behavior of Te on the surface of Pb0.985Mn0.015Te crystalline thin film was systematically studied. The results show that when 1ML Te is deposited on the surface of Pb0.985Mn0.015Te thin film, Te will combine with the most superficial Pb to form the flatness surface of atomic layer. When the thickness of deposited Te film is greater than 1 ML, Te nucleates at the edge of spiral step of Pb0.985Mn0.015Te film and forms Te clusters. With the increase of deposition thickness, these Te clusters grow continuously, and then converge with each other to form continuous spiral linear Te islands circling around the step line.

Keywords:Molecular Beam Epitaxy, Thin Film, Heterojunction, PbMnTe

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

Mn掺杂PbTe半导体材料具有优异的功率因子、低的热导率,在中温区(300~900 K)热电器件领域均具有广泛的应用前景 [1] [2] [3] [4] [5]。器件一般都是基于薄膜结构,对于制备以PbMnTe薄膜为基体的热电器件而言,金属与PbMnTe薄膜的欧姆接触承载着能源的输入与功能的输出,因此,金属与PbMnTe界面间的相互作用直接影响了热电器件的性能 [6] [7]。如Al/PbTe(100)和In/PbTe(100)界面,金属Al和In均和衬底原子Pb发生了交换反应,界面形成了反型层 [8]。此外,PbMnTe半导体薄膜表面还存在杂质、Pb或者Te空位、位错等各种缺陷,这些缺陷将在PbMnTe禁带中产生缺陷能级,从而影响接触特性。因此,研究金属与PbMnTe薄膜界面的形成机理及结构特性对PbMnTe热电器件的应用具有重要的意义。前期我们已对不同Mn掺杂量下PbTe薄膜的生长行为进行了系统研究,发现当Mn掺杂量为0.015时,PbMnTe薄膜保持了PbTe单晶结构相,并没有第二相结构析出 [9]。

为此,本文利用分子束外延在BaF2(111)基底上制备了高质量Pb0.985Mn0.015Te单晶薄膜,在此基础上,进一步在制备的Pb0.985Mn0.015Te单晶薄膜表面外延了金属Te薄膜,系统研究了Te在Pb0.985Mn0.015Te单晶薄膜表面的生长行为。

2. 实验细节

Pb0.985Mn0.015Te薄膜的制备以及Te金属在Pb0.985Mn0.015Te薄膜表面的外延生长均是在固体源分子束外延超高真空系统中完成的,该系统分为进样室和外延室,两室的本底真空分别为1.2 × 10−7 Pa和4 × 10−5 Pa。制备Pb0.985Mn0.015Te薄膜选用新鲜解离的BaF2(111)绝缘材料作为基底,Te、PbTe、Mn固体源纯度均为99.9999%。外延生长前,BaF2(111)基底先在进样室进行除水气处理,之后转移到生长室后,将BaF2(111)基底加热到550℃保持约10 min,以进一步去除附着在BaF2(111)基底表面的由C、H、O等构成的杂质,基底表面的清洁程度通过反射高能电子衍射(RHEED)进行原位监测。Te、PbTe、Mn固体源分别放置在氮化硼坩埚承载的束源炉中,通过控制束源炉的加热温度来调控Te、PbTe、Mn固体源束源炉的束流。制备Pb0.985Mn0.015Te薄膜时,保持BaF2(111)基底温度为250℃,由于Te的饱和蒸气压较高,当PbTe薄膜到达250℃的基底时,Te会出现再蒸发,导致制备的Pb0.985Mn0.015Te薄膜明显富Pb,为保持薄膜化学计量平衡,制备过程中同时开启Te、PbTe和Mn束源炉,并保持Te、PbTe束源炉的束流比为0.4。各束源炉的束流由系统中的束流规进行原位监测。Pb0.985Mn0.015Te薄膜的生长速率约为1 μm/h,生长约1 h后,关闭PbTe和Mn束源炉,继续生长Te薄膜。薄膜厚度利用石英晶振测厚仪原位监测,并经台阶仪测量标定。薄膜表面形貌的测试是在Bruker Multimode 8原子力显微镜(AFM)系统中完成。

3. 实验结果与分析

图1(a)给出了BaF2(111)基底上分子束外延制备的1 μm Pb0.985Mn0.015Te薄膜的AFM图。图中可以看到Pb0.985Mn0.015Te薄膜表面布满了大小不等(200~600 nm)的螺旋三棱锥体,这种螺旋锥体结构在III-V族和IV-VI族半导体薄膜中非常常见 [10] [11] [12] [13],其形成机理主要是由于Pb0.985Mn0.015Te与基底BaF2间存在晶格失配,Pb0.985Mn0.015Te的晶格常数略大于BaF2的晶格常数,在生长的初始阶段,Pb0.985Mn0.015Te会按照基底BaF2(111)晶格进行外延,同时受到压应力作用,随着薄膜厚度的增加,压应力随之增大,当压应力积累到一定程度时将以形成螺位错的方式进行释放,致使后续的生长以螺位错为中心不断长大,最后形成图1(a)中所示的螺旋三棱锥体,由RHEED监测结果(见下图2)可知,制备的Pb0.985Mn0.015Te螺旋三棱锥薄膜具有与PbTe(111)几乎相同的衍射条纹,即Pb0.985Mn0.015Te与PbTe具有相同的晶体结构。此外,图中还出现了一些如箭头所示的亮岛结构,这些亮岛应该是{100}取向的PbTe,这些{100}取向PbTe亮岛的出现应该跟表面能有关。众所周知,为达到相对稳定的能量最低状态,晶体的生长往往倾向于能量最低的晶面取向。PbTe为NaCl型的FCC结构,其能量最低面为{100}面,但由于BaF2基底为(111)取向,在基底的影响下,致使外延的PbTe形成了亚稳定的(111)取向,但这种亚稳定取向很容易在局域的微扰下发生改变,转向更稳定的{100}取向生长,从而降低薄膜系统的表面能。因此,图1(a)中所示的亮岛很可能是由于Mn掺杂对后续PbTe在这些区域的生长产生了局域的微扰,形成了以{100}面为表面的PbTe亮岛颗粒,这种{100}取向的PbTe亮岛颗粒在其他文献中也有相关报 [14]。

Figure 1. (a) Pb0.985Mn0.015Te (111) thin film; (b) 1 ML Te/Pb0.985Mn0.015Te (111) heterojunction; (c) 4 ML Te/Pb0.985Mn0.015Te (111) heterojunction AFM image; (d) The edge following the line direction of the figure (c) to make a parabolic plot of the cone step distribution

图1. (a) Pb0.985Mn0.015Te (111)薄膜;(b) 1 ML Te/Pb0.985Mn0.015Te (111)异质结;(c) 4 ML Te/Pb0.985Mn0.015Te (111)异质结的AFM图;(d) 为沿着(c)图线条方向作的锥体台阶分布抛线图

当在外延的Pb0.985Mn0.015Te薄膜表面生长1 ML Te金属时,发现薄膜表面形貌几乎没有发生改变(见图1(b))。具有NaCl型结构的Pb0.985Mn0.015Te,其(111)面为极性面,从纵向看为Pb层和Te层交替层状排布结构,因此,在最表面会出现Pb或者Te截止面两种可能性,对于此之前的工作中我们已经证实得到的PbTe为Pb截止面。当以Pb为截止面的Pb0.985Mn0.015Te (111)薄膜表面再沉积一层Te时,Te将会跟最表面的Pb结合继续构成具有单原子层平整度的表面,因此,形貌上并未发生本质性的改变。然而,当将Te的沉积厚度增加大4 ML时,薄膜形貌却发生了很大的变化(见图1(c)),与图1(a)和图1(b)相比,图1(c)中螺旋台阶变得更加明显,且台面上分布着规则连续的纳米线,在图1(c)中沿着锥体的螺旋台阶拉一条直接,得到了锥体台阶分布的抛线图如图1(d)所示,可以看到这些纳米线在每个台面上分布的高度与宽度几乎相等,分别约为20和3.2 nm,相邻台阶间的平均高度差约为3.76 Å,与Pb0.985Mn0.015Te (111)面的晶面间距3.54 Å非常接近。可以推断当沉积的Te薄膜厚度大于1 ML时,Te在螺旋台阶边缘成核形成Te团簇,随着沉积厚度的增加,这些Te成核团簇不断长大,之后相互融合形成了绕着台阶线盘旋的连续的Te纳米线。

为进一步研究Te/Pb0.985Mn0.015Te (111)异质结的结构特性,图2给出Pb0.985Mn0.015Te (111)薄膜及在Pb0.985Mn0.015Te (111)薄膜表面外延不同厚度Te的RHEED图。图2(a)为Pb0.985Mn0.015Te (111)薄膜的RHEED图。图中可以看到等间距分布的明亮的直线条,与PbTe薄膜的RHEED图非常接近(见文献 [9] ),表明制备的Pb0.985Mn0.015Te为高质量的单晶薄膜,1.5%的Mn掺杂并没有改变PbTe的晶体结构。图2(b)为在1 μm Pb0.985Mn0.015Te (111)薄膜表面生长1 ML Te薄膜时得到的RHEED图,与图2(a)相比,RHEED图并未发生明显的改变,表明Te按照Pb0.985Mn0.015Te (111)表面的晶格进行了外延,与AFM的结果相一致。当Te薄膜增加到2 ML时,RHEED图却发生了明显的改变,由图2(c)所示,图中出现了不连续的亮斑,当Te薄膜继续增加到4 ML时,RHEED图中只能隐约看到一些亮斑(图2(d)),由AFM结果可知,当Te的沉积厚度大于1 ML时,Te将沿着台阶边缘成核生长形成连续的螺旋线状Te岛。

Figure 2. (a) Pb0.985Mn0.015Te(111) thin film; (b) 1 ML Te/Pb0.985Mn0.015Te (111) heterojunction; (c) 2 ML Te/PbTe(111) heterojunction; (d) 4 ML Te/Pb0.985Mn0.015Te (111) RHEED diagram of heterojunction

图2. (a) Pb0.985Mn0.015Te (111)薄膜;(b) 1 ML Te/Pb0.985Mn0.015Te (111)异质结;(c) 2 ML Te/Pb0.985Mn0.015Te (111)异质结;(d) 4 ML Te/Pb0.985Mn0.015Te (111)异质结的RHEED图

4. 结论

本文利用分子束外延BaF2(111)基底上制备了高质量Pb0.985Mn0.015Te单晶薄膜,在此基础上,利用原子力显微镜和反射高能电子衍射系统研究了Te在Pb0.985Mn0.015Te单晶薄膜表面的生长行为。结果表明当在Pb0.985Mn0.015Te (111)薄膜表面沉积一层Te时,Te将会跟最表面的Pb结合形成具有单原子层平整度的薄膜表面;当沉积的Te薄膜厚度大于1 ML时,Te在Pb0.985Mn0.015Te薄膜螺旋台阶边缘成核形成Te团簇,随着沉积厚度的增加,这些Te成核团簇不断长大,之后相互融合形成绕着台阶线盘旋的连续的螺旋线状Te岛。

文章引用

唐曙锋,潘媛媛,王子龙,周佩聪,牛逸潇,郑双羽,姚育鹏,王舒凯,吴青书,严正博,吴海飞. Te/Pb0.985Mn0.015Te异质结生长行为研究
Study on the Growth Behavior of Te/Pb0.985Mn0.015Te Heterojunction[J]. 材料科学, 2020, 10(11): 916-920. https://doi.org/10.12677/MS.2020.1011110

参考文献

  1. 1. Nielsen, M.D., Levin, E.M., Jaworski, C.M., et al. (2012) Chromium as Resonant Donor Impurity in PbTe. Physical Review B, 85, Article ID: 045210. https://doi.org/10.1103/PhysRevB.85.045210

  2. 2. Jaworski, C.M. and Here-mans, J.P. (2012) Thermoelectric Transport Properties of the N-Type Impurity Al in PbTe. Physical Review B, 85, Article ID: 033204. https://doi.org/10.1103/PhysRevB.85.033204

  3. 3. Pei, Y.Z., La Londe, A.D., Heinz, N.A., et al. (2011) Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Advanced Materials, 23, 5674-5678. https://doi.org/10.1002/adma.201103153

  4. 4. Pei, Y.Z., Shi, X.Y., La Londe, A., et al. (2011) Con-vergence of Electronic Bands for High Performance Bulk Thermoelectrics. Nature, 473, 66-69. https://doi.org/10.1038/nature09996

  5. 5. Łusakowski, A., Bogusławski, P. and Radzynski, T. (2011) Calculated Electronic Structure of Pb1−xMnxTe (0 ≤ x < 11%): The role of L and Σ Valence Band Maxima. Physical Review B, 83, Article ID: 115206. https://doi.org/10.1103/PhysRevB.83.115206

  6. 6. Holloway, H. (1980) Thin-Film IV-VI Semiconductor Photo-diodes. Physics of Thin Films, 11, 105.

  7. 7. Wu, H.F., Zhang, H.J., Lu, Y.H., et al. (2008) Mn/PbTe(111) Interface Behavior Studied by Photoemission Spectroscopy. Applied Physics Letters, 92, 122112-1-122112-3.

  8. 8. Cerrina, F., Daniels, R.R. and Fano, V. (1983) Interface Formation at PbTe(100) Surfaces: Ge, Al, and In Overlayers. Applied Physics Letters, 43, 182. https://doi.org/10.1063/1.94273

  9. 9. Wu, H.F., Si, J.X., Yan, Y.H., et al. (2015) Recon-structions and Stabilities of PbTe(1 1 1) Crystal Surface from Experiments and Density-Functional Theory. Applied Surface Science, 356, 742-746. https://doi.org/10.1016/j.apsusc.2015.08.126

  10. 10. Wu, X.H., Elsaas, C.R., Abare, A., et al. (1998) Structural Origin of V-Defects and Correlation with Localized Excitonic Centers in InGaN/GaN Multiple Quantum Wells. Applied Physics Letters, 72, 692. https://doi.org/10.1063/1.120844

  11. 11. Kim, I.H., Park, H.S., Park, Y.J., et al. (1998) Formation of V-Shaped Pits in InGaN/GaN Multiquantum Wells and Bulk InGaN Films. Applied Physics Letters, 73, 1634. https://doi.org/10.1063/1.122229

  12. 12. Northrup, J.E., Romano, L.T. and Neugebauer, J. (1999) Surface Energetics, Pit Formation, and Chemical Ordering in InGaN Alloys. Applied Physics Letters, 74, 2319. https://doi.org/10.1063/1.123837

  13. 13. Duxbury, N., Bangert, U., Dawson, P., et al. (2000) Indium Segregation in InGaN Quantum-Well Structures. Applied Physics Letters, 76, 1600. https://doi.org/10.1063/1.126108

  14. 14. Zhang, B., Cai, C., Hu, L., et al. (2011) Observation of Regular Defects Formed on the Surface of PbTe Thin Films Grown by Molecular Beam Epitaxy. Applied Surface Science, 257, 1986-1989. https://doi.org/10.1016/j.apsusc.2010.09.039

  15. NOTES

    *通讯作者。

期刊菜单