﻿ 等高线整体综合方法研究 Technology and Applicational Research of Contours’ Holistic Generalization

Computer Science and Application
Vol.08 No.01(2018), Article ID:23594,11 pages
10.12677/CSA.2018.81010

Technology and Applicational Research of Contours’ Holistic Generalization

Hehui Liu, Songbai Zou

32022 Troops, Wuhan Hubei

Received: Jan. 4th, 2018; accepted: Jan. 22nd, 2018; published: Jan. 29th, 2018

ABSTRACT

Contours generalization is a key task of the geography information’s comprehensive approach，but there are many difficulties with existing tools, such as it cannot maintain the basic morphological characteristics of topography, and also cannot take into account the harmonization between the contour lines. This paper puts forward a technology of contours’ holistic generalization that gradually eliminates valleys based on the hierarchical level of the terrain feature lines and can control the generalization in the mass. The method of synthesis algorithm based on the relationship between the characteristic line levels, reasonably selects lower-grade characteristic line for valley generalization. It can goodly maintain the basic characteristics of topography, consider the harmonization between the contour lines, and be fit for quickly contours generalization.

Keywords:Terrain Feature Lines, Hierarchical Relationships, Maximum Cumulative Amount, Holistic Generalization

32022部队，湖北 武汉

1. 引言

1) 无法快速获取与处理境外等高线产品；

2) 单根等高线综合方法无法保证综合前后等高线的相似性；

3) 基于地形特征的等高线各类综合方法复杂，自动综合只能解决部分问题，自适应性不强；

4) 等高线成组综合算法一直处于研究试验阶段，部分克服了单根等高线综合算法的某些缺陷，但无法解决等高线之间的拓扑空间关系及协调性；

5) 基于DEM的综合方法无法保留DEM的地形特征。

2. 基于特征线层次关系的等高线整体综合

2.1. 整体综合的基本思想

2.2. 实现步骤

2.2.1. 特征线获取

2.2.2. 特征线层次关系建立

Figure 1. Flow-process diagram of contours holistic generalization

ti为路径数)，则各源头至节点n的累积量Si和最大累积量Smax为：

${S}_{i}={\sum }_{j=0}^{{t}_{i}}{L}_{ij}$

${S}_{max}=\text{Max}\left({S}_{i}\right)\left(i\in \left[0,k\right)\right)$ ，记i = q时取最大值。

2.2.3. 基于特征线层次关系取舍山谷

3. 关键技术

3.1. 地形特征线层次关系建立技术

Figure 2. Characteristic lines and valley choice

3.1.1. 支流最大累积量的计算

3.1.2. 主流的提取

3.2. 特征线层次的调整

3.2.1. 水系要素对特征层次的影响

1) 原比例尺地图水系要素对特征线层次划分的影响

Figure 3. Valley Line Hierarchy Structure

2) 目标比例尺地图水系要素对特征线层次划分的影响

3.2.2. 特征线密度影响特征层次关系

3.2.3. 特征线的人为调整

3.3. 同谷地综合处理

Figure 4. Contours generalization of a valley

Figure 5. Generalization results of a valley

4. 交互综合方法研究

4.1. 指定谷地综合法

Figure 6. Generalization method with selected a valley

4.2. 参照综合法

5. 实验比较

5.1. 等高线综合质量对比

Figure 7. Generalization method with reference sample

Figure 8. Contours processing with single-line generalization method

5.2. 等高线综合效率对比

Figure 9. Contours processing with DEM generalization method

Figure 10. Contours processing with holistic generalization method

Table 1. The man-hours statistics of 1:50,000 map contour generalization

1) 使用地形特征线层次来控制等高线的渐次综合，保留主要地形，精度满足制图要求。

2) 研究面向生产应用，针对性强，处理效率提高明显，这也是立项的初衷，利于快速解决境外等高线缺失的问题。

6. 结论

Technology and Applicational Research of Contours’ Holistic Generalization[J]. 计算机科学与应用, 2018, 08(01): 67-77. http://dx.doi.org/10.12677/CSA.2018.81010

1. 1. 贺晓晖, 陈楠, 等. 等高线自动综合方法的研究进展[J]. 遥感信息, 2014, 29(5): 125-130.

2. 2. 郭庆胜, 等. 等高线图形综合策略的研究[J]. 测绘信息与工程, 2005, 30(6): 16-19.

3. 3. 胡菡, 陈春华, 等. 等高线综合方法的比较与分析[J]. 地理空间信息, 2014, 12(2): 141-143.

4. 4. Anne, R. (1995) Multiple Paradigms for Automated Map Generalization: Geometry, Topology, Hierarchical Partitioning Triangulation. AutoCarto, 4, 69-78.

5. 5. Gold, C. and Thibault, D. (2004) Map Generalization by Skeleton Retraction. http://www.voronoi.com/wiki/images/2/23/Map_Generalization_by_Skeleton_Retraction_GenThib.pdf

6. 6. 毋河海. 地图综合基础理论与技术方法研究[M]. 北京: 测绘出版社, 2004.

7. 7. 郭庆胜, 毋河海, 等. 等高线的空间关系规则和渐进式图形简化方法[J]. 武汉测绘科技大学学报, 2000, 25(1): 31-34.

8. 8. 费立凡. 地形图等高线成组综合的试验[J]. 武汉测绘科技大学学报, 1993, 18(sup.): 6-21.

9. 9. 周小军, 等. 基于DEM化简的等高线综合研究[J]. 测绘工程, 2014, 23(2): 10-14.

10. 10. Zaksek, K. and Podobnikar, T. (2005) An Effective DEM Generalization with Basic GIS Operation. 8th ICA Workshop on Generalisation and Multiple Representation, July 7-8 2005, A Coruńa. https://www.researchgate.net/publication/257316178_An_effective_DEM_generalization

11. 11. 龙毅, 曹阳, 等. 基于约束D-TIN的等高线簇与河网协同综合方法[J]. 测绘学报, 2011, 40(3): 379-385.

12. 12. 刘民士, 等. 地貌与水系自动综合研究综述[J]. 地理与地理信息科学, 2015, 31(5): 48-50.

13. 13. 张毅, 等. 基于特征线层次关系的等高线综合方法研究[J]. 测绘, 2015, 38(5): 195-199.

14. 14. 刘合辉. 小比例制图中河流渐变技术研究[J]. 地理与地理信息科学, 2011, 2(1): 33-37.