Advances in Clinical Medicine
Vol. 11  No. 04 ( 2021 ), Article ID: 41541 , 8 pages
10.12677/ACM.2021.114217

多模式镇痛对肺癌患者围术期免疫功能和远期生存影响的研究进展

武淑芳1,张美峰1,宁新宇2*

1山西医科大学麻醉学系,山西 太原

2解放军总医院第三医学中心麻醉科,北京

收稿日期:2021年3月7日;录用日期:2021年4月7日;发布日期:2021年4月14日

摘要

目前手术切除仍是早期肺癌的主要治疗方法,但手术、麻醉、疼痛刺激等因素会引发机体一系列应激反应、神经内分泌变化,使患者围术期免疫功能受到影响,从而可能影响肺癌患者的预后。近年来研究表明,围术期多模式镇痛(Multimodal analgesia, MMA)通过联合具有不同镇痛机制的麻醉技术或药物,不仅提供了围术期有效的镇痛,也减少了阿片类药物的使用和副作用,进而可能对患者围术期的免疫有一定的保护作用。但临床麻醉中,多模式镇痛的方式较多,针对具体手术类型,尚未有明确的多模式镇痛方案。本文回顾了肺癌患者围术期多模式镇痛对患者免疫功能和远期生存的影响,以期为临床应用提供参考。

关键词

多模式镇痛,肺癌,神经阻滞,免疫功能,远期生存

Research Progress of the Effect of Multimodal Analgesia on the Perioperative Immune Functions and Long-Term Survival for Patients with Lung Cancer

Shufang Wu1, Meifeng Zhang1, Xinyu Ning2*

1Department of Anesthesiology, Shanxi Medical University, Taiyuan Shanxi

2Department of Anesthesiology, The Third Medical Center, PLA General Hospital, Beijing

Received: Mar. 7th, 2021; accepted: Apr. 7th, 2021; published: Apr. 14th, 2021

ABSTRACT

At present, surgical resection is still the main treatment for early lung cancer, but surgery, anesthesia, pain stimulation and other factors will lead to a series of stress response and neuroendocrine changes, which will affect the perioperative immune function of patients, which may affect the prognosis of lung cancer patients. In recent years, studies have shown that Multimodalanalgesia (MMA) can not only provide effective perioperative analgesia, but also reduce the use and side effects of opioids by combining with anesthesia technology or drugs with different analgesia mechanisms, which may have a certain protective effect on perioperative immunity of patients. However, in clinical anesthesia, there are many ways of multimodal analgesia, and there is no clear multimodal analgesia plan for specific operation types. This paper reviewed the effects of perioperative multimodal analgesia on the immune function and long-term survival of patients with lung cancer, in order to provide reference for clinical application.

Keywords:Multimodal Analgesia, Lung Cancer, Nerve Block, Immune Function, Long Term Survival

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

肺癌是全世界最常见的癌症相关死亡原因之一 [1]。大量研究表明免疫与肺癌的发生和发展有密切的联系 [2]。手术仍是早期肺癌目前主要的治疗方式,但手术创伤、麻醉等因素对患者术后免疫功能也会产生抑制,影响患者预后,因此从不同角度减轻围术期患者免疫抑制有重要意义。胸腔镜下肺叶切除术相比传统开胸手术而言,明显减轻了手术刺激,进而改善了肺癌患者围术期的免疫功能 [3],与此同时,近年来MMA的发展,不仅提供了围术期有效的镇痛,也减少了阿片类药物的使用和副作用,进而可能对患者围术期的免疫有一定的保护作用 [4]。本文就多模式镇痛中的药物和技术对免疫系统和远期生存的影响方面加以综述。

2. 肺癌、手术与免疫系统

肺癌与肿瘤微环境之间存在紧密的相互作用 [2],机体免疫系统是肿瘤微环境的主要组成部分,肺癌通过低抗原呈递、分泌免疫抑制配体、免疫抑制细胞扩张等 [5] 多种机制诱导局部和全身免疫抑制,损伤免疫系统。机体免疫系统发挥主要的抑制肿瘤生长的作用,肿瘤相关抗原被树突状细胞捕获,当树突状细胞迁移到淋巴结时,启动并激活肿瘤特异性的细胞溶解CD8+T细胞。这些效应细胞迁移和浸润肿瘤间质,在那里可能能够识别和消除癌细胞 [6]。胸腔镜下肺叶切除术是目前早期肺癌的主要治疗手段,但也同时会对免疫功能形成抑制影响癌症复发 [7]。围手术期生理和心理应激源激活下丘脑–垂体–肾上腺轴,导致糖皮质激素、儿茶酚胺和细胞因子的释放,促进手术诱导的免疫抑制,导致NK细胞和CD8+T细胞的数量和细胞溶解能力减少,促进肿瘤的调节性T细胞和TH2细胞水平增加 [8]。这些变化可能与各种类型肿瘤患者癌症复发和死亡率的增加风险相关 [9]。近年来的研究表明,麻醉药物对免疫系统有显著的影响,但这些药物受到手术或围术期其他干预因素的影响,因此在临床中很难描述麻醉药物对免疫系统的独立作用 [10]。

3. 手术、麻醉对肺癌患者远期生存的影响

肿瘤的生长和转移是癌症进展的重要因素。即使手术切除实体肿瘤,但由于术中不可察觉的肿瘤细胞与循环系统之间的交集,局部复发和远处转移也会发生。在手术和/或麻醉的刺激下,神经内分泌、免疫和代谢通路的应激反应可能会促进术后局部或未诊断的远端部位残留癌细胞的生存和增殖 [7]。临床研究表明外科手术(如微创手术)和麻醉技术(如全身麻醉和神经轴麻醉)可以通过调整肾上腺素能–炎症通路来调节癌症进展。其中,用于全身麻醉的药物(例如吸入麻醉与静脉麻醉以及阿片类镇痛)可能影响肿瘤细胞和免疫细胞的行为,因此麻醉剂的选择可能与恶性肿瘤的远期生存有关 [11]。一项meta分析结果显示,使用阿片类药物治疗术后疼痛或癌症相关疼痛可能与癌症患者较差的无进展生存期(Progression-free survival, PFS)和总生存期(Overall survival, OS)有关,而术中阿片类药物的使用与癌症生存率无关 [12]。围手术期使用β-肾上腺素受体拮抗剂、抗炎药物、静脉麻醉药和抗血栓药物与改善癌症患者的生存结果有关 [7]。应用非甾体抗炎药物(Non-steroid anti-inflammatory drugs, NSAIDs)和术后预防恶心呕吐并不影响患者的生存,甚至可能对肿瘤消退有积极作用 [13]。

4. 多模式镇痛常用的药物和技术

4.1. 阿片类药物

阿片类药物是治疗疼痛最有效的止痛药之一。阿片类药物通过与μ受体结合调节免疫系统的两个分支,最终导致宿主机体清除病原体的能力受损。在体外和动物实验中,吗啡和芬太尼已被发现损害巨噬细胞、自然杀伤细胞和T细胞的功能,并削弱肠道屏障。因此目前临床上围术期镇痛管理的主旋律为尽量使用最小阿片药物剂量或者引入其他协同全身药物和区域或神经轴阻滞。但另一方面,一些外源性阿片药物介导的镇痛作用是基于免疫细胞发挥作用的:外源性阿片类药物激活免疫细胞上的阿片类受体,使之释放内源性阿片肽(甲硫啡肽,β-内啡肽和强啡肽),进而诱导外周神经元阿片受体的镇痛作用。因此免疫抑制活性取决于阿片的类型,与阿片的效力或作用时间无关 [4]。例如,氢吗啡酮是一种不具有免疫抑制特性的高效短效阿片类药物。硫酸吗啡也很有效,作用时间短,但有免疫抑制作用。在动物和人体手术中,芬太尼、吗啡比舒芬太尼更易损害NK细胞的活性,但其中相关性尚不清楚。地佐辛是一种具有μ受体激动剂和拮抗剂活性的阿片类镇痛药。有研究 [14] 表明,地佐辛可增加人脐血和小鼠外周血中成熟树突状细胞的数量,提高CD8+T细胞增殖和细胞毒性,并抑制肿瘤转移。

4.2. 非甾体类药物

肿瘤细胞被证明可以分泌前列腺素 [15],这可能是逃避宿主细胞介导免疫的一种机制。而NSAIDs通过阻断环加氧酶(Cyclooxygenase, COX)-1和COX-2的作用,降低前列腺素合成,减轻与组织损伤相关的外周痛觉和肿胀,进而产生一定的免疫保护作用。COX-2抑制剂在大鼠模型中具有抗肿瘤和抗血管生成的特性,还可以减轻手术对肺肿瘤保留的有害影响 [16]。NSAIDs和化疗药物联合使用能够降低生存素 [17]、细胞粘附分子变异体6 [18] 和基金金属蛋白酶-2等与肿瘤生长转移等相关的分子的表达水平,改善免疫微环境,对肺癌–裸鼠模型的肿瘤生长具有显著的协同抑制作用 [9]。一些表达于激活的T细胞上的免疫检查点分子,如程序化死亡受体-1和毒性T细胞相关抗原4,能够抑制T细胞介导的抗肿瘤免疫,也被认为是肿瘤抗原持续刺激后T细胞耗竭的标志 [20],围手术期给予氟比洛芬酯可通过抑制术后72小时内CD8+T细胞上PD-1表达水平的升高减轻免疫抑制,促进抗肿瘤免疫。肝切除术的肝细胞癌患者围手术期使用帕瑞昔布钠联合患者自控镇痛芬太尼可更好地保留免疫功能,增强单纯芬太尼的镇痛效果,并有助于推迟术后肿瘤复发 [21]。在一项关于非小细胞肺癌患者的研究 [22] 中,术后使用NSAIDs的患者比术后未使用NSAIDs的患者有更长的OS和更低的肿瘤复发率。此外,早期非小细胞肺癌患者术后发热使用NSAIDs可延长OS和PFS。然而,也有报告 [23] 说围手术期使用NSAIDs并不是独立的生存预测因素。因此术后NSAIDs的使用与患者的长期预后之间的关系仍需高质量的前瞻性研究证实。

4.3. α2受体激动剂

免疫功能受损是由多种神经内分泌途径和炎症反应介导的。右美托咪定(Dexmedetomidine, DEX)主要通过以下机制间接减轻手术患者术后免疫抑制:中枢和外周神经系统α肾上腺素能受体联合作用,阻断HPA轴的正反馈 [24];抑制交感神经活动,减少儿茶酚胺和糖皮质激素的释放 [25];抑制炎症反应 [26]。动物实验表明,DEX还可直接作用于免疫细胞,与巨噬细胞上的α2肾上腺素受体结合,刺激Th1细胞的强效诱导剂IL-12的分泌 [27],促进患者的Th1/Th2细胞因子平衡向Th1转移。DEX通过抑制激活B细胞信号通路的p38丝裂原活化蛋白激酶/核因子κ-轻链增强子,提高卵巢癌大鼠血清IL-2和TNF-α浓度,增强免疫功能 [28]。有研究表明,低负荷剂量的DEX (<10 μg/kg)不会改变兴奋性突触传递或引起直接的突触后膜电流,而是主要通过增强浅表背角内的抑制性突触后传递来阻止对伤害性刺激的反应 [29],能够与阿片类药物在皮层上协同镇痛进而减少阿片类药物的使用,减轻免疫抑制。

4.4. 局部麻醉

电压门控钠通道是一种跨膜蛋白,在乳腺癌、结肠癌和肺癌中高度表达,局麻药与钠通道可逆结合,阻断电压门控钠通道,可能会因此促进免疫系统抑制肿瘤生长。另一个可能的机制是局麻药阻止中性粒细胞启动,下调中性粒细胞脱颗粒 [30],这种效应可能阻碍了中性粒细胞放大炎症反应的能力,因此也阻碍了外科损伤所产生的伤害性信号,间接减轻免疫抑制。利多卡因、罗哌卡因和布比卡因抑制增殖和分化,在体外对间充质干细胞具有细胞毒性,并对肿瘤生长和癌细胞转移形成具有关键作用 [31]。这些机制使局部麻醉发挥良好的镇痛作用并很大程度间接减轻免疫抑制。

目前用于肺癌手术的局部麻醉包括切口局麻药浸润、胸段硬膜外镇痛(Thorax epidural analgesia, TEA)和区域神经阻滞。切口浸润操作简单易行但效果有限,TEA是长期以来镇痛的金标准。胸外科食管癌患者手术时引起的组织损伤会增加血浆皮质醇(Cor)和IL-6浓度,Cor抑制Th0细胞分化为Th1细胞,从而促进Th2显性状态的形成,加重机体感染。TEA阻滞交感神经,抑制因应激反应而升高的血浆儿茶酚胺和皮质醇水平,减缓Th0细胞向Th2细胞的转化,进一步维持Th1/Th2的平衡,从而改善整体免疫反应和限制炎症反应,并提供更有效的术后镇痛(可能是通过减少复杂神经源性疼痛的发生) [32]。Rongyu Zhu等 [33] 研究发现术中全身麻醉联合术后TEA可减少食道开胸患者细胞免疫和认知功能的不良反应。但因TEA操作风险高,并发症较多,临床上越来越提倡更加精准、微创的超声引导下神经阻滞,包括椎旁神经、肋间神经、前锯肌平面、竖脊肌平面阻滞等。在肿瘤患者相关的研究中,与使用挥发性麻醉药和阿片类药物的全身麻醉相比,区域麻醉减少了手术应激、围手术期免疫抑制和血管生成 [34]。在一项关于非插管胸腔镜手术的研究 [35] 中发现,超声引导下TPVB可通过减少静脉麻醉药的有效剂量等手段,提供安全可靠的局麻,有效地维持自发呼吸,更有利于保护患者肺功能。在一项胸科手术的研究 [36] 中发现,实施TPVB或TEA的患者围术期CD3+和CD4+T细胞百分比高于对应的单纯全身麻醉组,二者均可以促进细胞免疫的恢复,其中TPVB在维持免疫功能方面更具有显著优势,可能与TEA相关的血流动力学不稳定发生率较高有关。区域麻醉提供了有效的术后早期镇痛,但其对远期发病率和死亡率的影响不明显 [37]。关于乳腺癌的一项研究 [38] 表明,与使用阿片类镇痛的全身麻醉相比,TPVB的使用与更低的炎症水平和更好的免疫应答相关,但尚未有数据证明TPVB与癌症复发或改善癌症相关生存期有明确关系。

4.5. 患者自控镇痛(Patient-controlled analgesia, PCA)

静脉自控镇痛因其技术简单、安全,仍被广泛应用于各种术后的疼痛控制中,但也有很多新型的自控镇痛方式出现。有研究 [39] 表明,小切口主动脉瓣置换术后患者自控镇痛泵伤口灌注0.2%罗哌卡因,明显减少了术后阿片类药物的用量,改善镇痛并间接减轻免疫抑制。最近,一种新的,预编程,无创,手持系统的PCA方式–舒芬太尼舌下片剂被开发用于中重度术后疼痛治疗 [40],该系统镇痛有效、起效快、感染率低,可能有利于患者术后活动和疾病康复。尽管避免了静脉导管PCA系统相关的一些风险,如静脉导管阻塞或移位、感染、吸入和活动受限,但其在免疫方面和远期生存的影响仍有待临床实验论证。

4.6. 其他

一项对于接受微创肺癌手术的患者的研究 [41] 中,围术期经皮穴位电刺激联合全身麻醉与减少术后疼痛、减少镇痛药的使用以及降低术后恶心呕吐的风险之间存在相关性。研究 [42] 表明,经皮电刺激穴位可预防化疗诱导的非小细胞肺癌患者骨髓抑制(白细胞、血小板),改善患者预后。

5. 多模式镇痛的组合方式

5.1. 药物的联合使用

有研究 [43] 表明羟考酮联合氟比洛芬酯应用于患者自控静脉镇痛,可有效减轻疼痛强度,特别是内脏疼痛,有助于扭转大肠癌根治性切除术中免疫抑制的状况。在一项研究 [44] 中,与基于舒芬太尼的胸腔镜手术镇痛相比,右美托咪定联合酮咯酸全程应用于术后镇痛,可提供充足、安全的术后镇痛,减少舒芬太尼用量,减少镇痛相关并发症,减轻炎症反应和免疫抑制。

5.2. 药物、方式的联合使用

目前的MMA多采用全身用药 + 局部阻滞的模式组合,在保留少量阿片类药物用量的前提下,复合其他镇痛方式,旨在有效镇痛的同时减轻围术期免疫抑制,减少副作用和术后并发症的发生率,尤其对于肺癌手术的患者,MMA的应用对于保护肿瘤免疫微环境有重要意义。如陆海波等人 [45] 研究发现,对实施肺癌根治术的患者,诱导前输注右美托咪定0.5 μg/kg + 切口注射0.375%罗哌卡因局部阻滞 + 术后芬太尼静脉自控镇痛的MMA组可明显减轻肺癌根治术患者的术后疼痛,围术期CD4+和CD4+/CD8+较对照组下降程度较弱,保护其免疫功能。Wei Zhang等 [36] 研究发现,在肺癌手术中,与单纯全麻组相比,TPVB组和右美托咪定复合TPVB组术中患者血流动力学稳定,术后镇痛效果较好,免疫抑制程度较轻,右美托咪定复合TPVB还能够降低肺损伤程度(包括损伤评分、细胞凋亡、炎症反应),对独立肺损伤和细胞免疫功能的保护可能是一个不错的选择方案。

但是也有研究 [46] 表明,使用多模式麻醉剂或镇痛药,同时避免挥发性麻醉剂和尽量减少阿片类药物的使用与远期生存改善没有关联。因此麻醉药物和技术与生存结果相关的证据可能需要高质量的、随机的和时间更长的临床研究来明确。

6. 总结与研究展望

肺癌患者围术期免疫功能对于术后康复、肿瘤复发有重要影响,MMA通过联合不同作用机制的镇痛药物和方式,在保证有效镇痛的同时减少阿片药物的用量,减轻免疫抑制,有利于术后康复,但与肿瘤患者远期生存之间的相关性尚缺乏明确的证据。目前在加速康复外科和精准医疗的大背景下,胸科手术多采用非阿片类药物 + 区域阻滞或切口局部浸润 + PCA的多模式方案,通过减少阿片药物的用量和副作用、减弱应激反应和炎症刺激等减轻免疫抑制。围术期疼痛和免疫抑制的程度受肿瘤类型、手术刺激、个体差异、心理等多因素的影响,因此,对于肺癌手术,如何选择合适的MMA方案,还需要大量的、随机性、多中心临床试验研究,以期使患者围术期免疫功能得到最大程度的保护,进一步优化肺癌患者围术期的麻醉管理。

文章引用

武淑芳,张美峰,宁新宇. 多模式镇痛对肺癌患者围术期免疫功能和远期生存影响的研究进展
Research Progress of the Effect of Multimodal Analgesia on the Perioperative Immune Functions and Long-Term Survival for Patients with Lung Cancer[J]. 临床医学进展, 2021, 11(04): 1518-1525. https://doi.org/10.12677/ACM.2021.114217

参考文献

  1. 1. Hirsch, F.R., Scagliotti, G.V., Mulshine, J.L., Kwon, R., Curran Jr., W.J., Wu, Y.-L., et al. (2017) Lung Cancer: Current Therapies and New Targeted Treatments. Lancet, 389, 299-311. https://doi.org/10.1016/S0140-6736(16)30958-8

  2. 2. O’Brien, S.M., Klampatsa, A., Thompson, J.C., Martinez, M.C., Hwang, W.-T., Rao, A.S., et al. (2019) Function of Human Tumor-Infiltrating Lymphocytes in Early-Stage Non-Small Cell Lung Cancer. Cancer Immunology Research, 7, 896-909. https://doi.org/10.1158/2326-6066.CIR-18-0713

  3. 3. 钱可宝, 张勇, 雷青, 缪祥帅, 毕书锋, 王巍炜. 三孔胸腔镜与开胸肺癌根治术对老年患者近期免疫功能的影响[J]. 中国老年学杂志, 2020, 40(18): 3849-3851.

  4. 4. Plein, L.M. and Rittner, H.L. (2018) Opioids and the Immune System-Friend or Foe. British Journal of Pharmacology, 175, 2717-2725. https://doi.org/10.1111/bph.13750

  5. 5. Remark, R., Becker, C., Gomez, J.E., Damotte, D., Dieu-Nosjean, M.-C., Sautès-Fridman, C., et al. (2015) The Non-Small Cell Lung Cancer Immune Contexture. A Major Determinant of Tumor Characteristics and Patient Outcome. American Journal of Respiratory and Critical Care Medicine, 191, 377-390. https://doi.org/10.1164/rccm.201409-1671PP

  6. 6. Pio, R., Ajona, D., Ortiz-Espinosa, S., Mantovani, A. and Lambris, J.D. (2019) Complementing the Cancer-Immunity Cycle. Frontiers in Immunology, 10, Article No. 774. https://doi.org/10.3389/fimmu.2019.00774

  7. 7. Hiller, J.G., Perry, N.J., Poulogiannis, G., Riedel, B. and Sloan, E.K. (2018) Perioperative Events Influence Cancer Recurrence Risk after Surgery. Nature Reviews Clinical Oncology, 15, 205-218. https://doi.org/10.1038/nrclinonc.2017.194

  8. 8. Zhou, L., Li, Y., Li, X., Chen, G., Liang, H., Wu, Y., et al. (2016) Propranolol Attenuates Surgical Stress-Induced Elevation of the Regulatory T Cell Response in Patients Undergoing Radical Mastectomy. The Journal of Immunology, 196, 3460-3469. https://doi.org/10.4049/jimmunol.1501677

  9. 9. Cata, J.P., Conrad, C. and Rezvani, K. (2015) Potential Use of Natural Killer Cell Transfer Therapy in the Perioperative Period to Improve Oncologic Outcomes. Scientifica, 2015, Article ID: 732438. https://doi.org/10.1155/2015/732438

  10. 10. Rossaint, J. and Zarbock, A. (2019) Anesthesia-Induced Immune Modulation. Current Opinion in Anaesthesiology, 32, 799-805. https://doi.org/10.1097/ACO.0000000000000790

  11. 11. Dubowitz, J.A., Sloan, E.K. and Riedel, B.J. (2018) Implicating Anaesthesia and the Perioperative Period in Cancer Recurrence and Metastasis. Clinical & Experimental Metastasis, 35, 347-358. https://doi.org/10.1007/s10585-017-9862-x

  12. 12. Zheng, J., He, J., Wang, W., Zhou, H., Cai, S., Zhu, L., et al. (2020) The Impact of Pain and Opioids Use on Survival in Cancer Patients: Results from a Population-Based Cohort Study and a Meta-Analysis. Medicine, 99, e19306. https://doi.org/10.1097/MD.0000000000019306

  13. 13. Plücker, J., Wirsik, N.M., Ritter, A.S., Schmidt, T. and Weigand, M.A. (2021) Anaesthesia as an Influence in Tumour Progression. Langenbeck’s Archives of Surgery. https://doi.org/10.1007/s00423-021-02078-z

  14. 14. Song, Q., Liu, G., Liu, D. and Feng, C. (2020) Dezocine Promotes T Lymphocyte Activation and Inhibits Tumor Metastasis after Surgery in a Mouse Model. Investigational New Drugs, 38, 1342-1349. https://doi.org/10.1007/s10637-020-00921-6

  15. 15. Wojtowicz-Praga, S. (2003) Reversal of Tumor-Induced Immunosuppression by TGF-Beta Inhibitors. Invest New Drugs, 21, 21-32. https://doi.org/10.1023/A:1022951824806

  16. 16. Wu, H., Tang, C., Tai, L.W., Yao, W., Guo, P., Hong, J., et al. (2018) Flurbiprofen Axetil Attenuates Cerebral Ischemia/Reperfusion Injury by Reducing Inflammation in a Rat Model of Transient Global Cerebral Ischemia/Reperfusion. Bioscience Reports, 38, Article ID: BSR20171562. https://doi.org/10.1042/BSR20171562

  17. 17. Tao, Y.F., Lu, J., Du, X.J., Sun, L.-C., Zhao, X., Peng, L., et al. (2012) Survivin Selective Inhibitor YM155 Induce Apoptosis in SK-NEP-1 Wilms Tumor Cells. BMC Cancer, 12, Article No, 619. https://doi.org/10.1186/1471-2407-12-619

  18. 18. Avoranta, S.T., Korkeila, E.A., Syrjanen, K.J., Pyrhönen, S.O. and Toivo Tapio Sundström, J. (2012) Lack of CD44 Variant 6 Expression in Rectal Cancer Invasive Front Associates with Early Recurrence. World Journal of Gastroenterology, 18, 4549-4556. https://doi.org/10.3748/wjg.v18.i33.4549

  19. 19. Sun, W. and Chen, G. (2016) Impact and Mechanism of Non-Steroidal Anti-Inflammatory Drugs Combined with Chemotherapeutic Drugs on Human Lung Cancer-Nude Mouse Transplanted Tumors. Oncology Letters, 11, 4193-4199. https://doi.org/10.3892/ol.2016.4493

  20. 20. Boussiotis, V.A. (2016) Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. New England Journal of Medicine, 375, 1767-1778. https://doi.org/10.1056/NEJMra1514296

  21. 21. Wang, R.D., Zhu, J.Y., Zhu, Y., Ge, Y.S., Xu, G.L. and Jia, W.D. (2020) Perioperative Analgesia with Parecoxib Sodium Improves Postoperative Pain and Immune Function in Patients Undergoing Hepatectomy for Hepatocellular Carcinoma. Journal of Evaluation in Clinical Practice, 26, 992-1000. https://doi.org/10.1111/jep.13256

  22. 22. Jiang, W., Wang, L., Zhang, J., Shen, H., Dong, W., Zhang, T., et al. (2018) Effects of Postoperative Non-Steroidal Anti-Inflammatory Drugs on Long-Term Survival and Recurrence of Patients with Non-Small Cell Lung Cancer. Medicine, 97, e12442. https://doi.org/10.1097/MD.0000000000012442

  23. 23. Lee, B.M., Rodriguez, A., Mena, G., Gottumukkala, V., Mehran, R.J., Rice, D.C., et al. (2016) Platelet-to-Lymphocyte Ratio and Use of NSAIDs during the Perioperative Period as Prognostic Indicators in Patients with NSCLC Undergoing Surgery. Cancer Control, 23, 284-294. https://doi.org/10.1177/107327481602300312

  24. 24. Yang, X.H., Bai, Q., Lv, M.M., Fu, H.G., Dong, T.L. and Zhou, Z. (2017) Effect of Dexmedetomidine on Immune Function of Patients Undergoing Radical Mastectomy: A Double Blind and Placebo Control Study. European Review for Medical and Pharmacological Sciences, 21, 1112-1116.

  25. 25. Ferreira, J.A. and Bissell, B.D. (2018) Misdirected Sympathy: The Role of Sympatholysis in Sepsis and Septic Shock. Journal of Intensive Care Medicine, 33, 74-86. https://doi.org/10.1177/0885066616689548

  26. 26. Marik, P.E. and Flemmer, M. (2012) The Immune Response to Surgery and Trauma: Implications for Treatment. Journal of Trauma and Acute Care Surgery, 3, 801-808. https://doi.org/10.1097/TA.0b013e318265cf87

  27. 27. Kang, B.Y., Lee, S.W. and Kim, T.S. (2003) Stimulation of Interleukin-12 Production in Mouse Macrophages via Activation of p38 Mitogen-Activated Protein Kinase by Alpha2-Adrenoceptor Agonists. European Journal of Pharmacology, 467, 223-231. https://doi.org/10.1016/S0014-2999(03)01628-5

  28. 28. Cai, Q.H., Tang, Y., Fan, S.H., Zhang, Z.-F., Li, H., Huang, S.-Q., et al. (2017) In Vivo Effects of Dexmedetomidine on Immune Function and Tumor Growth in Rats with Ovarian Cancer through Inhibiting the p38MAPK/NF-κB Signaling Pathway. Biomedicine & Pharmacotherapy, 95, 1830-1837. https://doi.org/10.1016/j.biopha.2017.09.086

  29. 29. Funai, Y., Pickering, A.E., Uta, D., Nishikawa, K., Mori, T., Asada, A., et al. (2014) Systemic Dexmedetomidine Augments Inhibitory Synaptic Transmission in the Superficial Dorsal Horn through Activation of Descending Noradrenergic Control: An in Vivo Patch-Clamp Analysis of Analgesic Mechanisms. Pain, 155, 617-628. https://doi.org/10.1016/j.pain.2013.12.018

  30. 30. Miralda, I., Uriarte, S.M. and McLeish, K.R. (2017) Multiple Phenotypic Changes Define Neutrophil Priming. Front Cell Infect Microbiol, 7, Article No. 217. https://doi.org/10.3389/fcimb.2017.00217

  31. 31. Lucchinetti, E., Awad, A.E., Rahman, M., Feng, J., Lou, P.-H., Zhang, L., et al. (2012) Antiproliferative Effects of Local Anesthetics on Mesenchymal Stem Cells: Potential Implications for Tumor Spreading and Wound Healing. Anesthesiology, 116, 841-856. https://doi.org/10.1097/ALN.0b013e31824babfe

  32. 32. Gu, C.Y., Zhang, J., Qian, Y.N. and Tang, Q.-F. (2015) Effects of Epidural Anesthesia and Postoperative Epidural Analgesia on Immune Function in Esophageal Carcinoma Patients undergoing Thoracic Surgery. Molecular and Clinical Oncology, 3, 190-196. https://doi.org/10.3892/mco.2014.405

  33. 33. Zhu, R., Xiang, J. and Tan, M. (2020) Effects of Different Anesthesia and Analgesia on Cellular Immunity and Cognitive Function of Patients after Surgery for Esophageal Cancer. Minerva Chirurgica, 75, 449-456. https://doi.org/10.23736/S0026-4733.20.08283-8

  34. 34. Kim, R. (2018) Effects of Surgery and Anesthetic Choice on Immunosuppression and Cancer Recurrence. Journal of Translational Medicine, 16, Article No. 8. https://doi.org/10.1186/s12967-018-1389-7

  35. 35. Yang, H., Dong, Q., Liang, L., Liu, J., Jiang, L., Liang, H., et al. (2019) The Comparison of Ultrasound-Guided Thoracic Paravertebral Blockade and Internal Intercostal Nerve Block for Non-Intubated Video-Assisted Thoracic Surgery. Journal of Thoracic Disease, 11, 3476-3481. https://doi.org/10.21037/jtd.2019.07.77

  36. 36. Zhang, W., Cong, X., Zhang, L., Sun, M., Li, B., Geng, H., et al. (2020) Effects of Thoracic Nerve Block on Perioperative Lung Injury, Immune Function, and Recovery after Thoracic Surgery. Clinical and Translational Medicine, 10, e38. https://doi.org/10.1002/ctm2.38

  37. 37. Jakobsson, J. and Johnson, M.Z. (2016) Perioperative Regional Anaesthesia and Postoperative Longer-Term Outcomes. F1000Research, 5, Article No. 2501. https://doi.org/10.12688/f1000research.9100.1

  38. 38. Pérez-González, O., Cuéllar-Guzmán, L.F., Soliz, J. and Cata, J.P. (2017) Impact of Regional Anesthesia on Recurrence, Metastasis, and Immune Response in Breast Cancer Surgery: A Systematic Review of the Literature. Regional Anesthesia & Pain Medicine, 42, 751-756. https://doi.org/10.1097/AAP.0000000000000662

  39. 39. Mijovski, G., Podbregar, M., Kšela, J., Jenko, M. and Šoštarič, M. (2020) Effectiveness of Wound Infusion of 0.2% Ropivacaine by Patient Control Analgesia Pump after Minithoracotomy Aortic Valve Replacement: A Randomized, Double-Blind, Placebo-Controlled Trial. BMC Anesthesiology, 20, Article No. 172. https://doi.org/10.1186/s12871-020-01093-9

  40. 40. Turi, S., Deni, F., Lombardi, G., Marmiere, M., Nisi, F.G. and Beretta, L. (2019) Sufentanil Sublingual Tablet System (SSTS) for the Management of Postoperative Pain after Major Abdominal and Gynecological Surgery within an ERAS Protocol: An Observational Study. Journal of Pain Research, 12, 2313-2319. https://doi.org/10.2147/JPR.S214600

  41. 41. Chen, J., Zhang, Y., Li, X., Wan, Y., Ji, X., Wang, W., et al. (2020) Efficacy of Transcutaneous Electrical Acupoint Stimulation Combined with General Anesthesia for Sedation and Postoperative Analgesia in Minimally Invasive Lung Cancer Surgery: A Randomized, Double-Blind, Placebo-Controlled Trial. Thoracic Cancer, 11, 928-934. https://doi.org/10.1111/1759-7714.13343

  42. 42. Zhao, F.C., Ye, C.Y., Wang, W.J., et al. (2020) Prevention Effect of Transcutaneous Electrical Acupoint Stimulation for Chemotherapy-Related Myelosuppression in Non-Small Cell Lung Cancer. Chinese Acupuncture and Moxibustion, 40, 596-600.

  43. 43. Wan, Z., Chu, C., Zhou, R. and Que, B. (2020) Effects of Oxycodone Combined With Flurbiprofen Axetil on Postoperative Analgesia and Immune Function in Patients Undergoing Radical Resection of Colorectal Cancer. Clinical Pharmacology in Drug Development, 10, 251-259. https://doi.org/10.1002/cpdd.818

  44. 44. Miao, Z., Wu, P., Wang, J., Wang, J., Zhou, F.C., Lin, Y., et al. (2020) Whole-Course Application of Dexmedetomidine Combined with Ketorolac in Nonnarcotic Postoperative Analgesia for Patients with Lung Cancer Undergoing Thoracoscopic Surgery: A Randomized Control Trial. Pain Physician, 23, E185-E193. https://doi.org/10.36076/ppj.2020/23/E185

  45. 45. 陆海波, 陈默, 司波, 施冬冬. 多模式镇痛对肺癌根治术患者术后疼痛和免疫功能的影响[J]. 中国临床研究, 2015, 28(11): 1493-1495.

  46. 46. Cata, J.P., Nguyen, L.T., Ifeanyi-Pillette, I.C., Van Meter, A., Dangler, L.A., Feng, L., et al. (2019) An Assessment of the Survival Impact of Multimodal Anesthesia/Analgesia Technique in Adults Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Propensity Score Matched Analysis. International Journal of Hyperthermia, 36, 369-374. https://doi.org/10.1080/02656736.2019.1574985

期刊菜单