Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 68325 , 7 pages
10.12677/ACM.2023.1371494

系统性红斑狼疮伴动脉粥样硬化危险因素研究进展

崔天晓,叶·叶尔丁其木克,米扎尼也古丽·卡哈尔,崔挺,张继云*

新疆医科大学第二附属医院风湿免疫科,新疆 乌鲁木齐

收稿日期:2023年6月3日;录用日期:2023年6月28日;发布日期:2023年7月5日

摘要

系统性红斑狼疮(Systemic Lupus Erythematosus, SLE)好发于育龄女性,是以自身免疫抗体和免疫复合物为媒介,慢性炎症性组织损伤为主要表现的一种自身免疫性疾病。它的炎症损伤可涉及到全身各个脏器,其中以累及心血管系统所引起的不良影响是最严重的。大量的研究资料显示SLE患者的前期死亡原因主要是疾病活动,后期则往往发展成动脉粥样硬化(Atherosclerosis, AS),从而使死亡率升高。经典的危险因素如肥胖、吸烟等可以加速AS进展,但对非传统危险因素控制并采取全面干预措施亦能改善SLE病人的预后,降低死亡率。因此SLE治疗中必须重视血管病变的防治。本文将重点讨论近期系统性红斑狼疮伴动脉粥样硬化(SLE-AS)危险因素的研究进展。

关键词

系统性红斑狼疮,动脉粥样硬化,危险因素

Advances in the Study of Risk Factors for Systemic Lupus Erythematosus with Atherosclerosis

Tianxiao Cui, Ye Yerdingqmk, Mizaniye Kaharv, Ting Cui, Jiyun Zhang*

Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Jun. 3rd, 2023; accepted: Jun. 28th, 2023; published: Jul. 5th, 2023

ABSTRACT

Systemic Lupus Erythematosus (SLE) occurs in women of childbearing age and is an autoimmune disease with chronic inflammatory tissue damage mediated by autoimmune antibodies and immune complexes. Its inflammatory damage can involve all organs of the body, with the most serious adverse effects caused by the involvement of the cardiovascular system. A large number of studies have shown that the main cause of death in SLE patients is disease activity in the early stages, while the later stages tend to develop atherosclerosis (AS), which increases mortality. While classical risk factors such as obesity and smoking can accelerate the progression of AS, control of non-traditional risk factors and comprehensive interventions can also improve the prognosis of SLE patients and reduce mortality. Therefore, the prevention and treatment of vascular lesions must be emphasized in the management of SLE. In this article, we will focus on recent advances in the study of risk factors for SLE with atherosclerosis (SLE-AS).

Keywords:Systemic Lupus Erythematosus, Atherosclerosis, Risk Factor

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

AS是一种慢性的炎症性疾病,它可使SLE患者的机体处于氧化应激状态,使组织抗氧化功能减低、脂质发生过氧化、机体抗原性物质增加、加剧机体免疫功能紊乱、血管内膜受损 [1] 、细胞发生凋亡 [2] [3] [4] 。目前SLE的斑块形成与发展与AS相关机制学说可能存在交叉,可控的传统危险因素诸如吸烟,血脂异常等在促进AS发展的过程中起重要作用,但近年来也有一些研究认为维生素D、干扰素(Interferon, IFN)、白介素(Interleukin, IL)、自身抗体、肠道菌群等相关危险因素影响了SLE患者动脉斑块的形成。故本文就近期SLE-AS的相关危险因素研究进展进行综述。

2. 自身抗体与SLE-AS的关系

自身抗体和免疫复合物有助于SLE血管损伤和AS的发展。20%~30%的SLE患者存在抗β2-糖蛋白I (β2-GPI) [5] ,并且与静脉和动脉血栓形成风险升高有关 [6] ,尤其是β2-GPI引起的T细胞反应,广泛表达于动脉粥样硬化斑块的内皮下区域和内膜-内侧边界,T细胞反应可以促进促炎症条件和自身抗体的分泌 [7] [8] 。此外,抗β2-GPI还与氧化低密度脂蛋白(Oxidized Low Den-SityLipoproteinox, ox-LDL)结合,形成oxLDL/β2-GPI复合物,通过吞噬作用被巨噬细胞吸收,导致泡沫细胞转化增加,从而加强斑块形成 [9] 。相反,部分免疫球蛋白M(IgM)抗体可能在SLE的CVD中发挥保护作用,至少部分通过促进Treg发挥作用 [10] 。且国内有研究指出抗β2-GPI与动脉硬化指数显著正相关 [11] 。

抗内皮细胞抗体(anti-endothelial cell antibodies, AECA)是Osterland等首次发现并命名的一组异质性抗体,是中性粒细胞胞浆抗体家族中成员之一,SLE患者的AECA阳性率约为56.4%,并且以IgG型为主,AECA水平与SLEDAI评分呈正相关 [12] 。AECA可与血管内皮细胞(EC)的结构抗原和粘附EC的分子结合,有研究发现AECA与可溶性E选择素和可溶性血管细胞黏附分子1(ICAM-l)呈正相关,AECA可能参与了SLE血管损伤的初始阶段,其潜在机制包括① AECA在损伤的内皮处形成的免疫复合物通过补体或抗体依赖的细胞毒性触发炎症反应,上调ECs粘附分子的表达,包括E-选择素、ICAM-l以及细胞因子和趋化因子。② 目前认为最主要的途径是通过激活ICAM-1基因的转录因子NF-κB激活P38MAPK信号转导通路调节ICAM-1基因和蛋白表达启动ICAM-1合成;同时内皮细胞激活后产生的细胞因子也可影响ICAM-1表达。此外,健康人群体内低水平的AECA起到保护作用 [13] [14] 。

SLE自身抗体谱复杂多样,只有少数自身抗体用于SLE-AS的辅助诊断,这可能是因为许多自身抗体缺乏标准化的试验检测。所以识别SLE-AS中的致病性抗体仍然是一个巨大挑战。

3. 炎症反应

3.1. IFN与SLE-AS的关系

随着基因芯片研究的深入,有团队发现SLE病人外周血干扰素基因呈高表达特点,干扰素具有促进其自身反应性B淋巴细胞向浆细胞分化等作用。按其作用分为3型,其中I型IFN主要与SLE的内皮功能障碍和冠心病进展有关 [15] ,Pattanaik Sarit等一项荟萃分析表明 [16] SLE病人血浆中IL-6、IFN含量明显高于健康人并且与疾病活动指数(SLEDAI)呈正相关。IFN抑制平滑肌细胞/内皮细胞的增殖活性以增加斑块的不稳定性 [17] 。CaseyKA [18] 等一项临床药物试验发现,SLE患者组胆固醇流出能力(CEC)较健康人群对照组功能明显失调,且SLE患者糖蛋白乙酰化(GlycA)水平高于对照组;接受anifrolumab (一种抑制I-IFN活性的生物制剂)治疗后随访发现SLE组与治疗前相比,GlycA显著降低,CEC得到改善,而安慰剂组上述指标未见改善,此类研究可能更进一步支持I-IFN在SLE-AS的中的关键作用。2020年埃及学者进行的一项病例对照研究显示 [19] ,SLE患者血清IFN-α中位数明显高于健康对照组,但该研究未见到IFN-α与疾病活动、临床特征和抗双链DNA的标志物有关。一部分原因不除外与IFN-α水平检测难度高相关。尽管IFN与AS的相关机制目前暂无确定结论,但抑制上述途径可减轻机体炎症反应,这对于降低SLE个体的心血管风险是存在受益的。

3.2. 白细胞介素与SLE-AS的关系

IL主要来源于激活的单核巨噬细胞,并与机体自身免疫性炎症反应密切相关。目前研究发现与AS有关细胞因子主要为白介素家族相关细胞因子,大致分为促进AS的细胞因子如IL-6 (interleukin-6)、IL-27 (interleukin27)、IL-34 (interleukin-34)等和抑制AS的细胞因子如IL-10 (interleukin-10)和IL-37 (interleukin-37)等两大类 [20] [21] 。有研究得出结论认为 [22] SLE患者血清IL-27水平较对照组低,IL-27因其自身抗炎促炎的双向免疫调节功能与SLE疾病活动度紧密联系并且与AS进展相关。动物模型内高脂血症环境触发树突状细胞分泌IL-27,然后刺激CXCR3+TFH细胞的分化。这些细胞诱导生发中心反应和致病性IgG2c自身抗体的产生,从而加重动物模型的自身免疫性狼疮 [23] [24] 。活动期SLE患者IL-6水平明显高于非活动期SLE患者,并且其血清水平与疾病活动度呈正相关,易患狼疮的小鼠在各种器官中表现出明显的血管内和血管周围白细胞浸润,且主动脉和肾脏中促炎细胞因子表达增加,主动脉内膜中膜厚度增加,表明IL-6通过加剧促炎细胞因子表达以及血管炎症从而进一步加速AS [25] 。IL-34水平与SLEDAI评分呈正相关,并在青少年狼疮患者中高度表达,IL-34增加ox-LDL诱导的炎症细胞上调,通过p38MAPK信号通路上调CD36表达促进了泡沫细胞的形成。而且可进一步调控IL-6、TNF-α等促炎细胞因子表达 [26] 。白介素家族中促炎细胞因子通过募集炎症细胞渗透到活化的内皮下或调节自身免疫反应,诱导单核细胞趋化蛋白和粘附分子,对于加速AS和斑块易损性方面发挥核心作用。近年来关于SLE中抑制AS粥样硬化的细胞因子的研究较少。IL-10是目前公认的最主要的抗炎细胞因子之一,并且通过抑制免疫细胞活化及抑制促炎细胞因子生成来维持机体免疫平衡 [27] 。相关报道证实接受治疗的SLE患者IL-10水平升高,其水平和SLEDAI呈负相关 [28] 。但是关于SLE中抑制动脉硬化的IL相关细胞因子文献报道较少,因其白细胞介素家族庞大,作用机制复杂,未来需要更多的临床及实验研究进一步揭示其作用机制。

4. 代谢紊乱

4.1. 维生素D与SLE-AS的关系

SLE患者日照不足以及治疗过程中因药物使用,可造成不同程度的维生素D缺乏。维生素D可以抑制Th17的分化,同时促进Treg的分化 [29] 。维生素D含量与颈股动脉脉搏速度及内膜中膜厚度呈正相关,且随着血清钙含量的增加,其对动脉硬化的作用显著增强。动脉硬化的发生可能与高水平维生素D增加成纤维细胞生长因子导致内皮细胞损伤,进一步诱导斑块蓄积有关 [30] 。TabraSAA [31] 等相关研究表明维生素D水平与SLEDAI评分呈负相关。维生素D可抑制晚期糖基化产物(AGE)的累积,下调AGE受体(RAGE)的表达,并提高可溶性RAGE (sRAGE),进而调控AGE/RAGE通路,减少炎症反应以及抗氧化作用,从而阻断脂质代谢紊乱 [32] 。骨化三醇既能下调血清CXC趋化因子10配体(CXC chemokineligand-10, CXCL-10)。同时可以增强血管生成细胞的血管生成能力。并能调控内皮细胞中内皮细胞一氧化氮合成酶(nitric oxide synthase, NOs)的表达,调节血管内皮的生长,启动血管活性物质,促进血管生长与再生等功能 [33] 。在一般人群研究中发现 [34] 维生素D缺乏症与内皮功能障碍和亚临床动脉粥样硬化有关。然而,一项对1980年至2002年间出生的大量前瞻性队列妇女的研究表明 [35] ,维生素D的摄入对SLE的风险没有显著影响。关于维生素D对于SLE-AS的作用机制仍有待确定,需要进一步前瞻性研究。

4.2. 脂质代谢紊乱与SLE-AS的关系

一项多中心的临床队列研究显示,新诊断的SLE患者经过3年随访,血脂异常诊断率由36%增长到了60% [36] 。SLE患者由于其疾病性质所致,在稳定期及活动期的病程中始终受到炎症和免疫的叠加损害,且病情活动时器官损伤风险更大,除上述原因之外,年龄增长、性别以及糖皮质激素的使用均可能成为血脂异常产生的原因。Zhou Bo等 [37] 发现SLE患者在活动期中甘油三酯(Triglyceride, TG)和极低密度脂蛋白(Very Low Density Lipoprotein, VLDL)水平升高,高密度脂蛋白胆固醇(high density lipoprotein, HDL)水平下降,血脂异常与SLEDAI评分正相关。在炎症微环境下,炎症介质能够降低脂蛋白酶活性,HDL抗氧化能力减低。疾病的免疫失调如抗dsDNA抗体与抗HDL抗体异常升高均有可能使细胞外胆固醇外流能力(CEC)受损 [38] 。蛋白亚型能够轻松穿透血管壁,并且由于内皮下高浓度的活性氧和保护低密度脂蛋白酶水平降低,对狼疮血浆中的氧化应激具有高度敏感性 [39] 。HDL颗粒的性质和大小在SLE中发挥不同生理作用 [40] 。HDL的抗氧化特性通常阻止LDL的氧化,降低氧化低密度脂蛋白吸引单核细胞到动脉内膜下层并引发泡沫细胞形成的能力。HDL抗氧化活性在很大程度上依赖于主要的HDL载脂蛋白组分Apo-AI和抗氧化酶对氧磷酶1(PON1)在炎症条件下,HDL的抗氧化作用可能被改变,一方面是通过改变HDL相关蛋白基因表达,另一方面是改变HDL的功能和组成 [41] 。这可能导致Apo-A1水平下降,Apo-A1 能够促进逆向胆固醇运输,并能成为潜在的LDL衍生的氧化磷脂,从而使该分子成为潜在的治疗靶点 [42] 。关于目前临床治疗方面,他汀类药物治疗能否改善SLE患者预后以及对SLE患者是否常规使用降脂药物仍存有争议,较为肯定的是常规免疫抑制剂在抑制狼疮活动同时可以减缓动脉壁损害。

5. 肠道菌群与SLE-AS的关系

肠道菌群是参与人体消化吸收、影响免疫功能平衡的生态系统,其菌群结构相对恒定,80%~90%为拟杆菌门和厚壁菌门。研究表明肠道菌群紊乱在AS及SLE发病环节中均起到关键影响。2014年有研究首次通过对肠道菌群基因组、代谢组等进行检测后发现,SLE患者肠道菌群门水平下,厚壁菌门/拟杆菌门(F/B)比值下降 [43] 。同样,2019年Guo等 [44] 再次证实SLE患者肠道菌群的上述特征性改变,而且该团队发现接受糖皮质激素治疗的患者此比值增加;有研究对SLE患者粪便样本进行了16SrRNA基因测序显示 [45] 链球菌属、弯曲杆菌属、韦氏菌属等狼疮活性呈正相关。在肠道功能紊乱的情况下,免疫细胞的异常活化和促炎细胞因子释放增多 [46] 。厚壁菌门中肠道罗斯拜瑞菌与β2-GPI的多肽同源,可发生免疫交叉反应,引发抗磷脂抗体综合征 [47] ,此外,一些研究还提出SLE患者革兰阳性厚壁菌门和革兰阴性菌拟杆菌门所占比例减少,其AS产生机制可能为toll样受体4 (TLR-4)的过度激活、炎症通路的上调,NF-κB增加肠道的通透性、增加CRP和三甲胺N-氧化物(TMAO)水平 [48] 。Circulation近年发表的一项研究显示,根据对人体样本以及小鼠模型实验分析,冠心病病人中普通拟杆菌及多氏拟杆菌的丰度与对照组相比明显下降,人体中普通拟杆菌与多氏拟杆菌或可抑制或缓解肠道微生物脂多糖所引起的炎症,来改善动脉粥样硬化的形成 [49] 。目前可以确定是肠道微生物的代谢组分的改变是诱发慢性炎症的部分原因。但肠道菌群与自身免疫性疾病合并AS之间的关系的具体机制尚在研究之中。根据现有的循证医学证据,调节胃肠道菌群在对SLE患者调整肠道内环境稳态的同时,可能也对机体慢性炎症反应有益,减少心血管疾病发生。肠道菌群有望在未来成为防治AS的新策略。

6. 结语

SLE患者的患AS比普通人群患AS的发病率和死亡率都要高,而斑块的形成机制不能完全由传统的风险因子所解释。而随着医疗技术的进步,慢性炎症、内皮功能的损害以及免疫机制的研究越来越受到关注,早期识别并对疾病活动进行控制,可以在延缓机体慢性炎症的同时内皮功能障碍也得到一部分改善,降低SLE患者死亡率。明确SLE-AS作用机制,对疾病临床精准分型及个体化治疗起到至关重要的作用。

基金项目

新疆维吾尔自治区自然科学基金(2019D01C239)。

文章引用

崔天晓,叶·叶尔丁其木克,米扎尼也古丽·卡哈尔,崔 挺,张继云. 系统性红斑狼疮伴动脉粥样硬化危险因素研究进展
Advances in the Study of Risk Factors for Systemic Lupus Erythematosus with Atherosclerosis[J]. 临床医学进展, 2023, 13(07): 10700-10706. https://doi.org/10.12677/ACM.2023.1371494

参考文献

  1. 1. Patiño-Trives, A.M., Pérez-Sánchez, C., Pérez-Sánchez, L., et al. (2021) Anti-dsDNA Antibodies Increase the Cardio-vascular Risk in Systemic Lupus Erythematosus Promoting a Distinctive Immune and Vascular Activation. Arterioscle-rosis, Thrombosis, and Vascular Biology, 41, 2417-2430. https://doi.org/10.1161/ATVBAHA.121.315928

  2. 2. Gao, N., Kong, M., Li, X., et al. (2022) Systemic Lupus Er-ythematosus and Cardiovascular Disease: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article ID: 908831. https://doi.org/10.3389/fimmu.2022.908831

  3. 3. Oliveira, C.B. and Kaplan, M.J. (2022) Cardiovascular Disease Risk and Pathogenesis in Systemic Lupus Erythematosus. Seminars in Immunopathology, 44, 309-324. https://doi.org/10.1007/s00281-022-00922-y

  4. 4. Frostegård, J. (2023) Systemic Lupus Erythematosus and Car-diovascular Disease. Journal of Internal Medicine, 293, 48-62. https://doi.org/10.1111/joim.13557

  5. 5. Radin, M., Cecchi, I., Roccatello, D., et al. (2018) Prevalence and Thrombotic Risk Assessment of Anti-β2 Glycoprotein I Domain I Antibodies: A Systematic Review. Seminars in Thrombosis and Hemostasis, 44, 466-474. https://doi.org/10.1055/s-0037-1603936

  6. 6. Fierro, J.J., Velásquez, M., Cadavid, A.P., et al. (2022) Effects of Anti-Beta 2-Glycoprotein 1 Antibodies and Its Association with Pregnancy-Related Morbidity in Antiphospholipid Syn-drome. American Journal of Reproductive Immunology, 87, e13509. https://doi.org/10.1111/aji.13509

  7. 7. Cinoku, I.I., Mavragani, C.P. and Moutsopoulos, H.M. (2020) Atherosclerosis: Beyond the Lipid Storage Hypothesis. The Role of Autoimmunity. European Journal of Clinical Investigation, 50, e13195. https://doi.org/10.1111/eci.13195

  8. 8. Monjezi, M.R., Fouladseresht, H., Farjadian, S., et al. (2021) T Cell Prolif-erative Responses and IgG Antibodies to β2GPI in Patients with Diabetes and Atherosclerosis. Endocrine, Metabolic & Immune Disorders—Drug Targets, 21, 495-503. https://doi.org/10.2174/1871530320666200505115850

  9. 9. Kuang, W., Li, Y., Liu, G., et al. (2022) Correlation between Serum β2-GPI/oxLDL and the Risk of Cerebral Infarction in Patients with T2DM. Frontiers in Surgery, 9, Ar-ticle ID: 930701. https://doi.org/10.3389/fsurg.2022.930701

  10. 10. Sun, J., Lundström, S.L., Zhang, B., et al. (2018) IgM Antibodies against Phosphorylcholine Promote Polarization of T Regulatory Cells from Patients with Atherosclerot-ic Plaques, Systemic Lupus Erythematosus and Healthy Donors. Atherosclerosis, 268, 36-48. https://doi.org/10.1016/j.atherosclerosis.2017.11.010

  11. 11. 王君君, 章帆, 姜丰, 等. 动脉粥样硬化指数与血清抗心磷脂抗体及抗β2糖蛋白1抗体水平的相关性研究[J]. 中国动脉硬化杂志, 2019, 27(7): 611-614.

  12. 12. 赵维庆, 刘爽, 付李胤且, 等. 系统性红斑狼疮患者血清AECA检测临床意义的再评价[J]. 国际检验医学杂志, 2022, 43(2): 134-142.

  13. 13. Cieślik, P., Semik-Grabarczyk, E., Hrycek, A., et al. (2022) The Impact of Anti-Endothelial Cell Antibodies (AECAs) on the Development of Blood Vessel Damage in Patients with Systemic Lupus Erythematosus: The Preliminary Study. Rheumatology International, 42, 791-801. https://doi.org/10.1007/s00296-022-05104-5

  14. 14. 高岭, 王莉, 殷丝雨, 等. 系统性红斑狼疮患儿血清抗内皮细胞抗体检测的临床意义[J]. 现代免疫学, 2021, 41(5): 392-396.

  15. 15. Morand, E.F., Furie, R., Tanaka, Y., et al. (2020) Trial of Anifrolumab in Active Systemic Lupus Ery-thematosus. The New England Journal of Medicine, 382, 211-221. https://doi.org/10.1056/NEJMoa1912196

  16. 16. Pattanaik, S.S., Panda, A.K., Pati, A., et al. (2022) Role of Interleu-kin-6 and Interferon-α in Systemic Lupus Erythematosus: A Case-Control Study and Meta-Analysis. Lupus, 31, 1094-1103. https://doi.org/10.1177/09612033221102575

  17. 17. Lai, J.H., Hung, L.F., Huang, C.Y., et al. (2021) Mitochondrial Protein CMPK2 Regulates IFN Alpha-Enhanced Foam Cell Formation, Potentially Contributing to Premature Athero-sclerosis in SLE. Arthritis Research & Therapy, 23, Article No. 120. https://doi.org/10.1186/s13075-021-02470-6

  18. 18. Casey, K.A., Smith, M.A., Sinibaldi, D., et al. (2021) Modula-tion of Cardiometabolic Disease Markers by Type I Interferon Inhibition in Systemic Lupus Erythematosus. Arthritis & Rheumatology, 73, 459-471. https://doi.org/10.1002/art.41518

  19. 19. Fayed, A., El Menyawi, M.M., Ghanema, M., et al. (2020) Measurement of Serum Interferon Alpha in Egyptian Patients with Systemic Lupus Erythematosus and Evaluation of Its Effect on Disease Activity: A Case-Control Study. Reumatismo, 72, 145-153. https://doi.org/10.4081/reumatismo.2020.1308

  20. 20. Zhang, W., Borcherding, N. and Kolb, R. (2020) IL-1 Signal-ing in Tumor Microenvironment. In: Birbrair, A., Ed., Tumor Microenvironment, Springer, Berlin, 1-23. https://doi.org/10.1007/978-3-030-38315-2_1

  21. 21. Zhou, L. and Todorovic, V. (2021) Interleukin-36: Structure, Signaling and Function. In: Atassi, M.Z., Ed., Protein Reviews, Springer, Berlin, 191-210. https://doi.org/10.1007/5584_2020_488

  22. 22. Duarte, A.L., Dantas, A.T., de Ataíde Mariz, H., et al. (2013) De-creased Serum Interleukin 27 in Brazilian Systemic Lupus Erythematosus Patients. Molecular Biology Reports, 40, 4889-4892. https://doi.org/10.1007/s11033-013-2588-1

  23. 23. Ryu, H. and Chung, Y. (2018) Dyslipidemia Pro-motes Germinal Center Reactions via IL-27. BMB Reports, 51, 371-372. https://doi.org/10.5483/BMBRep.2018.51.8.171

  24. 24. Liu, Q., Fan, J., Bai, J., et al. (2018) IL-34 Promotes Foam Cell Formation by Enhancing CD36 Expression through p38 MAPK Pathway. Scientific Reports, 8, Article No. 17347. https://doi.org/10.1038/s41598-018-35485-2

  25. 25. Marczynski, P., Meineck, M., Xia, N., et al. (2021) Vascular In-flammation and Dysfunction in Lupus-Prone Mice-IL-6 as Mediator of Disease Initiation. International Journal of Mo-lecular Sciences, 22, Article No. 2291. https://doi.org/10.3390/ijms22052291

  26. 26. El-Banna, H.S., El Khouly, R.M. and Gado, S.E. (2020) Elevated Se-rum Interleukin-34 Level in Juvenile Systemic Lupus Erythematosus and Disease Activity. Clinical Rheumatology, 39, 1627-1632. https://doi.org/10.1007/s10067-019-04899-2

  27. 27. Wu, Y.R., Hsing, C.H., Chiu, C.J., et al. (2022) Roles of IL-1 and IL-10 Family Cytokines in the Progression of Systemic Lupus Erythematosus: Friends or Foes? IUBMB Life, 74, 143-156. https://doi.org/10.1002/iub.2568

  28. 28. Mohammadi, S., Ebadpour, M.R., Sedighi, S., et al. (2017) Gluco-corticoid-Induced Leucine Zipper Expression Is Associated with Response to Treatment and Immunoregulation in Sys-temic Lupus Erythematosus. Clinical Rheumatology, 36, 1765-1772. https://doi.org/10.1007/s10067-017-3711-9

  29. 29. Yamamoto, E.A., Nguyen, J.K., Liu, J., et al. (2020) Low Levels of Vitamin D Promote Memory B Cells in Lupus. Nutrients, 12, Article No. 291. https://doi.org/10.3390/nu12020291

  30. 30. Mellor-Pita, S., Tutor-Ureta, P., Rosado, S., et al. (2019) Calcium and Vitamin D Supplement Intake May Increase Arterial Stiffness in Systemic Lupus Erythematosus Patients. Clinical Rheumatology, 38, 1177-1186. https://doi.org/10.1007/s10067-018-04416-x

  31. 31. Tabra, S., Abdelnabi, H.H., Darwish, N., et al. (2020) Juvenile Lupus and Serum Vitamin D Levels: A Cross-Sectional Study. Lupus, 29, 1752-1758. https://doi.org/10.1177/0961203320957721

  32. 32. Lee, T.W., Kao, Y.H., Chen, Y.J., et al. (2019) Therapeutic Po-tential of Vitamin D in AGE/RAGE-Related Cardiovascular Diseases. Cellular and Molecular Life Sciences, 76, 4103-4115. https://doi.org/10.1007/s00018-019-03204-3

  33. 33. Reynolds, J.A., Haque, S., Williamson, K., et al. (2016) Vitamin D Improves Endothelial Dysfunction and Restores Myeloid Angiogenic Cell Function via Reduced CXCL-10 Expression in Systemic Lupus Erythematosus. Scientific Reports, 6, Article No. 22341. https://doi.org/10.1038/srep22341

  34. 34. Oz, F., Cizgici, A.Y., Oflaz, H., et al. (2013) Impact of Vitamin D Insuffi-ciency on the Epicardial Coronary Flow Velocity and Endothelial Function. Coronary Artery Disease, 24, 392-397. https://doi.org/10.1097/MCA.0b013e328362b2c8

  35. 35. Islam, M.A., Shahad SaifAlam, S.S. and PrzemyslawHas-san, R. (2019) Vitamin D Status in Patients with Systemic Lupus Erythematosus (SLE): A Systematic Review and Me-ta-Analysis. Autoimmunity Reviews, 18, Article ID: 102392. https://doi.org/10.1016/j.autrev.2019.102392

  36. 36. Tselios, K., Koumaras, C., Gladman, D.D., et al. (2016) Dyslipidemia in Systemic Lupus Erythematosus: Just Another Comorbidity? Seminars in Arthritis and Rheumatism, 45, 604-610. https://doi.org/10.1016/j.semarthrit.2015.10.010

  37. 37. Zhou, B., Xia, Y. and She, J. (2020) Dysregulated Serum Lipid Profile and Its Correlation to Disease Activity in Young Female Adults Diagnosed with Systemic Lupus Er-ythematosus: A Cross-Sectional Study. Lipids in Health and Disease, 19, Article No. 40. https://doi.org/10.1186/s12944-020-01232-8

  38. 38. Ronda, N., Favari, E., Borghi, M.O., et al. (2014) Impaired Se-rum Cholesterol Efflux Capacity in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Annals of Rheumatic Dis-eases, 73, 609-615. https://doi.org/10.1136/annrheumdis-2012-202914

  39. 39. Olusi, S.O. and George, S. (2011) Prevalence of LDL Atherogenic Phenotype in Patients with Systemic Lupus Erythematosus. Vascular Health and Risk Management, 7, 75-80. https://doi.org/10.2147/VHRM.S17015

  40. 40. Kim, S.Y., Yu, M., Morin, E.E., et al. (2020) High-Density Lipoprotein in Lupus: Disease Biomarkers and Potential Therapeutic Strategy. Arthritis & Rheumatology, 72, 20-30. https://doi.org/10.1002/art.41059

  41. 41. Kotur-Stevuljević, J., Vekić, J., Stefanović, A., et al. (2020) Paraoxonase 1 and Atherosclerosis-Related Diseases. Bio- factors, 46, 193-205. https://doi.org/10.1002/biof.1549

  42. 42. Cochran, B.J., Ong, K.L., Manandhar, B., et al. (2021) APOA1: A Protein with Multiple Therapeutic Functions. Current Athero-sclerosis Reports, 23, Article No. 11. https://doi.org/10.1007/s11883-021-00906-7

  43. 43. Hevia, A., Milani, C., Lopez, P., et al. (2014) Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. mBio, 5, e01548-14. https://doi.org/10.1128/mBio.01548-14

  44. 44. Guo, M., Wang, H., Xu, S., et al. (2020) Alteration in Gut Microbiota Is Associated with Dysregulation of Cytokines and Glucocorticoid Therapy in Systemic Lupus Erythematosus. Gut Microbes, 11, 1758-1773. https://doi.org/10.1080/19490976.2020.1768644

  45. 45. Li, Y., Wang, H.F., Li, X., et al. (2019) Disordered Intestinal Microbes Are Associated with the Activity of Systemic Lupus Erythematosus. Clinical Science (London), 133, 821-838. https://doi.org/10.1042/CS20180841

  46. 46. Brown, E.M., Kenny, D.J. and Xavier, R.J. (2019) Gut Microbiota Reg-ulation of T Cells during Inflammation and Autoimmunity. Annual Review of Immunology, 37, 599-624. https://doi.org/10.1146/annurev-immunol-042718-041841

  47. 47. Ruff, W.E., Dehner, C., Kim, W.J., et al. (2019) Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity. Cell Host & Microbe, 26, 100-113.e8. https://doi.org/10.1016/j.chom.2019.05.003

  48. 48. Kasselman, L.J., Vernice, N.A., DeLeon, J., et al. (2018) The Gut Microbiome and Elevated Cardiovascular Risk in Obesity and Autoimmunity. Atherosclerosis, 271, 203-213. https://doi.org/10.1016/j.atherosclerosis.2018.02.036

  49. 49. Yoshida, N., Emoto, T., Yamashita, T., et al. (2018) Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Athero-sclerosis. Circulation, 138, 2486-2498. https://doi.org/10.1161/CIRCULATIONAHA.118.033714

  50. NOTES

    *通讯作者。

期刊菜单