﻿ 表层沉积物对水中F-吸附及解析过程的影响 Analytical Experiment and Mechanism Study of Surface Sediment on Fluorine Solution

Advances in Environmental Protection
Vol. 09  No. 05 ( 2019 ), Article ID: 32424 , 8 pages
10.12677/AEP.2019.95090

Analytical Experiment and Mechanism Study of Surface Sediment on Fluorine Solution

Qing Liu1,2,3,4*, Junyao Yang5#, Yaqin Wang5, Liumei Ren5

1Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi’an Shaanxi

2Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi’an Shaanxi

3Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources, Xi’an Shaanxi

4Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an Shaanxi

5College of Water Conservancy Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi

Received: Sep. 15th, 2019; accepted: Sep. 23rd, 2019; published: Sep. 30th, 2019

ABSTRACT

After the surface water is polluted, it reacts with the surface sediments and releases the pollutants to form the secondary pollution source. In order to study the adsorption and desorption of F in soils and determine the chemical reactions that happened during the F analysis, kinetic tests and adsorption and desorption experiments were used in this study. Combined with pseudo-second-order kinetic equation and isothermal adsorption equation, the reaction kinetics and adsorption analysis between the mud and the reservoir water show that when the reaction time and the initial concentration are changed; the reaction rate, the reaction process and the migration and transformation rules of F in water are obtained. The results show that: 1) The kinetic process controlled by chemical reaction may be the dominant surface sediment, which can be described by pseudo second-order kinetic equation. The fitting equation is y = 0.7401x + 0.1266 and the correlation coefficient is R2 = 0.9985. 2) The isotherm of F adsorption by surface sediment is in accordance with the linear relationship, and the saturated analytical volume of F is 30.56 mg·g−1. 3) After the soil sample is in contact with the fluorine solution, the pH value of the solution increases with the increase of the F-mass concentration, indicating that OH is continuously released in the F analysis progresses; it can be seen from the change of other ions. The chemical reactions of F occurring during the analysis process are precipitation-dissolution, adsorption-analysis, and ion exchange.

Keywords:Fluorine, Dynamics, Adsorption Analysis

1陕西省土地工程建设集团有限责任公司，陕西 西安

2陕西地建土地工程技术研究院有限责任公司，陕西 西安

3自然资源部退化及未利用土地整治工程重点实验室，陕西 西安

4陕西省土地整治工程技术研究中心，陕西 西安

5太原理工大学水利科学与工程学院，山西 太原

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

2. 材料与方法

2.1. 试验材料

Table 1. Particle analysis results and soil classification

Table 2. Physical characteristics of the test sample

Table 3. Chemical characteristics of the test soil samples

2.2. 试验方法

3. 结果与分析

${Q}_{e}=\frac{\left({C}_{e}-{C}_{0}\right)V}{m}$ (1)

3.1. 动力学试验结果分析

Table 4. F− five kinds of adsorption kinetic model fitting

3.2. F解析情况

Figure 1. Pseudo-second-order kinetic fit

3.3. 解析机理分析

3.3.1. 环境(pH)变化

Figure 2. The fitting curve of F desorption

Figure 3. The change of pH value with F concentration

3.3.2. 其他离子的变化

(a) Fe浓度变化 (b) Mn浓度变化 (c) Na+浓度变化 (d) Ca2+浓度变化 (e) Mg2+浓度变化 (f) SO42- 浓度变化

Figure 4. Other ions with the F concentration trend

3.3.3. 吸附机理分析

4. 结论

Analytical Experiment and Mechanism Study of Surface Sediment on Fluorine Solution[J]. 环境保护前沿, 2019, 09(05): 669-676. https://doi.org/10.12677/AEP.2019.95090

1. 1. 曹春, 康宏亮, 李萍萍, 等. 聚丙烯偕胺肟改性羊毛对氟离子的吸附及机理[J]. 高分子学报, 2016(4): 486-493.

2. 2. 荆秀艳, 袁周燕, 杨红斌, 等. 土氟静态吸附特性及其影响因素[J]. 生态环境学报, 2008, 17(5): 1818-1821.

3. 3. 杨军耀. 水–土系统氟迁移影响因素分析[J]. 工程勘察, 1998(3): 42-44.

4. 4. 江霜英, 高廷耀. 粘土对水中氟离子吸附去除机理的研究[J]. 化工环保, 2003, 23(4): 204-208.

5. 5. 王庆文. 土壤对矿井水中F−的吸附动力学和吸附机理初探[J]. 河南理工大学学报(自然科学版), 2009, 28(6): 807-810.

6. 6. 梁鹏. 稀土改性壳聚糖树脂的制备、表征及对氟离子的吸附特性研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2013.

7. 7. 阮建云, 马立锋, 石元值, 等. 茶园土壤对氟的吸附与解吸特性[J]. 茶叶科学, 2001, 21(2): 161-165.

8. 8. Peek, D.C. and Volk, V.V. (1985) Fluoride Sorption and Desorption in Soils. Soil Science Society of America Journal, 49, 583-586. https://doi.org/10.2136/sssaj1985.03615995004900030010x

9. 9. Zhu, M.X., Ding, K.Y., Jiang, X. and Wang, H.-H. (2007) Investigation on Co-Sorption and Desorption of Fluoride and Phosphate in a Red Soil of China. Water Air & Soil Pol-lution, 183, 455-465. https://doi.org/10.1007/s11270-007-9394-0

10. 10. 陈男. 天然及合成多孔性粘土材料对地下水中氟化物的吸附性能研究[D]: [博士学位论文]. 北京: 中国地质大学, 2012.

11. 11. 韩德刚, 高盘良. 化学动力学基础[M]. 北京: 北京大学出版社, 1987.

12. 12. 董岁明. 氟在土–水系统中的迁移机理与含氟水的处理研究[D]: [博士学位论文]. 西安: 长安大学, 2004.

13. 13. 梁秀娟. 吉林西部洋沙泡水库水土环境中氟的迁移转化机理研究[D]: [博士学位论文]. 长春: 吉林大学, 2008.

14. 14. Nur, T., Loganathan, P., Nguyen, T.C., et al. (2014) Batch and Column Adsorption and Desorption of Fluoride Using Hydrous Ferric Oxide: Solution Chemistry and Modeling. Chemical Engineering Journal, 247, 93-102. https://doi.org/10.1016/j.cej.2014.03.009

15. 15. 王洪涛. 多孔介质污染物迁移动力学[M]. 北京: 高等教育出版社, 2008.

16. NOTES

*第一作者。

#通讯作者。