﻿ 缠绕管换热器性能数值模拟研究 Numerical Simulation Study of Spiral-Wound Exchanger

Mechanical Engineering and Technology
Vol.05 No.04(2016), Article ID:19432,9 pages
10.12677/MET.2016.54045

Numerical Simulation Study of Spiral-Wound Exchanger

Xuebin Huang1, Zhibin Zhu1, Penghui Zhuang1, Jingwei Zhang2

1Xiamen Special Equipment Inspection Institute, Xiamen Fujian

2School of Chemical Engineering, Fuzhou University, Fuzhou Fujian

Received: Dec. 8th, 2016; accepted: Dec. 22nd, 2016; published: Dec. 29th, 2016

ABSTRACT

Both the layer spacing and tube pitch of heat exchanger affected not only the heat transfer but also the geometry of heat exchanger. In this paper, three different kinds of layer spacing (4 mm, 7 mm, 10 mm) and tube pitch (15 mm, 18 mm, 21 mm) of spiral-wound exchanger were investigated using numerical simulation by FloEFD software. The result showed that the shell side fluid temperature at the pipe outlet, fluid flow rate and pressure drop decreased with increasing layer spacing; the shell side fluid temperature at the pipe outlet, and fluid flow rate decreased with increasing tube pitch. But, pressure drop increased with increasing tube pitch. The comprehensive performances (the unit pressure drop at shell side) were used to evaluate heat transfer performance and the results indicated that the smaller the layer spacing and tube pitch, the better the comprehensive performances. The results provided a reference for heat exchanger design.

Keywords:Numerical Simulation, Heat Transfer Coefficient, Pressure Drop, Spiral-Wound, Flow Rate

1厦门市特种设备检验检测院，福建 厦门

2福州大学石油化工学院，福建 福州

1. 引言

2. 有限元模型

Figure 1. 3D model of spiral-wound exchanger

Table 1. The geometry of FEM model with different layer spacing

3. 结果与讨论

3.1. 层间距对换热器性能影响

3.1.1. 壳程温度分布

3.1.2. 壳程速度分布

3.1.3. 壳程速度分布

3.2. 不同管间距绕管换热器

3.2.1. 壳侧温度分布

(a) (b)(c)

Figure 2. The temperature distribution in shell side with different layer spacing: (a) 4 mm; (b) 7 mm; (c) 10 mm

(a) (b)(c)

Figure 3. The flow rate in shell side with different layer spacing: (a) 4 mm; (b) 7 mm; (c) 10 mm

(a) (b)(c)

Figure 4. The pressure drop in shell side with different layer spacing: (a) 4 mm; (b) 7 mm; (c) 10 mm

Table 2. The heat transfer coefficient and pressure drop with different layer spacing

Figure 5. The effect of layer spacing on comprehensive performances of spiral-wound exchanger

(a) (b)(c)

Figure 6. The temperature distribution in shell side with different tube pitch (a) 15 mm; (b) 18 mm; (c) 21 mm

3.2.2. 壳侧流速分布

3.2.3. 壳侧压降分布

Table 3. The heat transfer coefficient and pressure drop with different tube pitch

(a) (b)(c)

Figure 7. The flow rate in shell side with different tube pitch (a) 15 mm; (b) 18 mm; (c) 21 mm

(a) (b)(c)

Figure 8. The pressure drop in shell side with different tube pitch (a) 15 mm; (b) 18 mm; (c) 21 mm

Figure 9. The effect of tube pitch on comprehensive performances of spiral-wound exchanger

4. 结论

1) 不同层间距下，绕管换热管壳侧温度、流速、压降均随着层间距增大而减小，综合性能指标表明层间距越小越好。

2) 不同管间距条件下，绕管换热管壳侧温度、流速随管间距增大而减小，而壳程压降随管间距增大而增大，综合性能指标表明管间距越小越好。

3) 模拟结果为绕管换热管换热器合理设计层间距及管间距提供参考。

Numerical Simulation Study of Spiral-Wound Exchanger[J]. 机械工程与技术, 2016, 05(04): 367-375. http://dx.doi.org/10.12677/MET.2016.54045

1. 1. 张杏祥, 桑芝富. 管壳式换热器壳程传热性能比较[J]. 石油化工设备, 2006, 35(3): 8-10.

2. 2. 蒋国光, 王守业. 弹性管束缠绕结构换热器在化工流程中应用分析[J]. 通用机械, 2010(9): 26-28.

3. 3. 王守业. 新型弹性管束螺纹缠绕换热器特点及在深冷系统应用[J]. 现代制造, 2011(14): 28-30.

4. 4. 郭崇志, 陈孝文. 管壳式换热器分段模拟数值方法的适应性研究[J]. 化工机械, 2014, 41(2): 198-202.

5. 5. 张强, 刘巨保, 李刚. 套管换热器多场耦合动态响应数值模拟[J]. 化工机械, 2004, 41(1): 95-98.

6. 6. 钱颂文. 管式换热器强化传热技术[M]. 北京: 化学工业出版社, 2003.

7. 7. 王智拓. 缠绕管式换热器的性能研究[D]: [硕士学位论文]. 福州: 福州大学, 2015.