Botanical Research
Vol. 09  No. 03 ( 2020 ), Article ID: 35731 , 14 pages
10.12677/BR.2020.93027

Research Progress in Stress Resistance of Plants Mediated by Endophytic Bacteria

Mengke Qiang1*, Yizhuo Xu2*, Rui Gao3#

1School of Life Science, Liaoning Normal University, Dalian Liaoning

2Material Science and Engineering College, Northeast Forestry University, Haerbin Heilongjiang

3Dandong Forestry and Grassland Development Service Center, Dandong Liaoning

Received: Apr. 13th, 2020; accepted: May 18th, 2020; published: May 25th, 2020

ABSTRACT

Endophytic bacteria have significantly effects on the plant growth and development in adverse environments by promoting plant growth, improving plant nutrient uptake, decreasing plant pathogens infection, affecting plant enzyme and metabolic products activities and enhancing plant stress resistance. The paper reviewed the recent studies on the diversity of stress-resistant endophytic bacteria. In addition, the effects of the functional endophytic bacteria on the plant stress-resistance were analyzed and the mechanisms involved were elucidated. This study provides new idea and foundation that the application of endophytic bacteria improving stress resistance of plants.

Keywords:Endophytic Bacteria, Stress Resistance, Mechanism

植物内生细菌介导的植物抗逆性研究进展

强梦轲1*,徐奕卓2*,高蕊3#

1辽宁师范大学生命科学学院,辽宁 大连

2东北林业大学材料科学与工程学院,黑龙江 哈尔滨

3丹东市林业和草原发展服务中心,辽宁 丹东

收稿日期:2020年4月13日;录用日期:2020年5月18日;发布日期:2020年5月25日

摘 要

内生细菌对植物生长发育具有重要影响,在恶劣环境中,可促进植物生长、改善植物营养吸收、降低病原菌侵染、影响酶及代谢产物活性,增强植物抗逆性。本文通过结合近年来有关具胁迫功能内生细菌多样性研究进展,分析了不同功能内生细菌在植物胁迫效应上的影响;阐述了功能内生细菌调控植物抗逆性的机制。旨在为进一步利用内生细菌调控植物抗逆性提供思路和依据。

关键词 :内生细菌,抗逆性,机制

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

植物是一个复杂的微生态系统,栖居着不同的微生物类群,且在长期演化过程中建立了紧密的互惠共生关系 [1] [2];在植物生长阶段,某些微生物可促进植物生长,提高抗逆性,进而提高其对环境变化的适应能力 [3],这为相关微生物在农业可持续发展及环境友好型社会建立中的开发利用开辟了一条新途径。内生微生物是植物相关微生物类群中最为特殊的一类,由于其具有相对稳定的生长环境,不易受外界环境变化的影响,且易获得有机物质 [4],因此可对植物产生更稳定的影响 [5]。近几十年来,关于菌根真菌 [6] [7] [8] 和根瘤菌科固氮内生菌 [9] [10] 及内生真菌 [11] [12] [13] [14] 在宿主植物上的作用已于植物有大量研究和总结;而关内生细菌与宿主植物间的促生策略及生态机制的研究相对较少。

植物内生细菌是指定殖在植物组织内部,能从表面灭菌的植物组织分离获得,而不引起任何负面特征的细菌群体 [15] [16]。内生细菌分布在地球上几乎每一种植物中,并能从根部、叶部和茎部,甚至花、果实及种子中分离获得 [17]。内生细菌与植物在长期共同进化中已成为植物微生态系统的天然组分,可促进植物对恶劣环境的适应,加强系统生态平衡;其定殖植物体后,可赋予宿主植物生态优势,提高植物适合度,包括增加营养吸收、促进生长和发育、赋予胁迫耐性和病虫害抗性等 [18] - [23]。本文旨在归纳植物内生菌对宿主植物抗逆性的影响及其所涉及的胁迫抗性机制,为深入了解内生细菌与植物抗逆性关系提供理论依据。

2. 具抗逆功能内生细菌的分布

表1归纳了当前已发表的定殖植物体后具有显著抗逆效应的内生细菌、抗逆类型及宿主植物等。基于表1阐述了内生细菌的胁迫抗性和涉及的相互作用机制。结果表明具有抗逆功能的内生细菌主要分布于游动放线菌属(Actinoplanes)、棍状杆菌属(Clavibacter)、微杆菌属(Microbacterium)、节杆菌属(Arthrobacter)、库克氏菌属(Kocuria)、小单孢菌属(Micromonospora)、血杆菌属(Sanguibacter)、链霉菌菌属(Streptomyces)、芽孢杆菌属(Bacillus)、梭菌属(Clostridium)、假单胞菌属(Pseudomonas)、肠杆菌属(Enterobacter)、伯克霍尔德氏菌属(Burkholderia)、甲基杆菌属(Methylobacterium)、沙雷氏菌属(Serratia)、克雷伯氏菌属(Klebsiella)、不动细菌属(Acinetobacter)、鞘氨醇单胞菌属(Sphingomonas)、丛毛单胞菌属(Comamonas)、Herbaspirillum属、嗜麦芽寡食单胞菌属(Stenotrophomonas)、泛菌属(Pantoea)、青枯雷尔氏菌属(Ralstonia)、拉恩菌属(Rahnella)、Naxibacter属和Variovorax属等26个属。其中芽孢杆菌属、假单胞菌属、肠杆菌属和伯克霍尔德氏菌属为优势类群,这些内生细菌大多是土壤细菌属的普通成员 [17]。

Table 1. Stress resistance of plants mediated by endophytic bacteria

表1. 内生细菌介导的植物胁迫抗逆性

3. 内生细菌对植物抗逆性的影响

3.1. 内生细菌对植物抗旱性的影响

在非生物胁迫因子中,干旱胁迫是阻碍植物生长最为广泛的限制因子,研究表明在干旱和半干旱地区农作物接种土著有益微生物可显著增强农作物耐旱性 [72]。Yandigeri等从印度拉贾斯坦邦干旱区5种植物中分离、筛选出Streptomyces coelicolor DE 07、S.olivaceus DE10和S. geysiriensis DE27等3株耐旱内生放线菌,其定殖小麦(Triticum aestivum)后在干旱胁迫条件下可显著增强小麦幼苗活力,提高耐旱性。 [30] 在渗透胁迫条件下,辣椒(Capsicum annuum)通过接种内生细菌Arthrobacter sp. EZB4和Bacillus sp. EZB 8,可显著降低干旱胁迫诱导基因CaACCO (编码ACC氧化酶)和CaLTPI (编码脂质转移蛋白)的上调(P < 0.05),并增加脯氨酸含量,从而提高辣椒耐渗透胁迫能力 [28]。

3.2. 内生细菌对植物抗盐性的影响

众多研究表明,不同宿主植物通过接种内生有益细菌可显著缓解盐分胁迫的负向效应。Ozawa等 [54] 研究表明盐生植物盐角草(Salicornia europaea)通过接种内生细菌Pseudomonas pseudoalcaligenes Sal 35可显著提高幼苗生长的盐浓度,而且相比对照植物,接种内生细菌的盐角草茎具有更高的总氮、叶绿素、Na+和K+含量。盐敏感类型芒草(Miscantbus sinensis)通过接种内生细菌Clostridium sp. Kas 201-1和Enterobacter sp. B901-2可缓解盐分胁迫产生的种群扰动,提高耐盐性 [48]。滕松山(2011) [53] 在盐生植物碱蓬(Suaeda glauca)中分离获得一株内生细菌Pseudomonas oryzihabitans LP11,其能够定殖碱蓬和黄瓜(Cucumis sativus)幼苗,且在盐分胁迫条件下可提高种子萌发率,增加植物叶绿素、可溶性糖及脯氨酸含量,促进植物根长、叶长、株高及鲜重增加,提高抗盐性。研究表明,分离自盐生植物海滨锦葵(Kosteletzkya virginica)的内生细菌Bacilluscereus Kp120和Bacillus megaterium Kp5能显著提高盐胁迫下小麦幼苗的干物质重和叶绿素含量,并能提高植物保护酶活性,进而缓解盐分胁迫对植物危害 [42]。

3.3. 内生细菌对植物耐冷性的影响

低温也是许多物种生长发育、地理分布和农作物产量的主要限制因子 [74] [75];研究发现相比冷敏感植物,耐冷植物具有更高的抗氧化酶活性,表明抗氧化酶活性与植物耐冷性密切相关 [76]。丁硕(2011) [77] 通过对高山离子芥(Chorispora bungeana)及相关内生细菌协同抗寒性分析,表明内生细菌Clavibacter sp. Enf 12可显著降低冷诱导产生的电解质渗透及脂质过氧化反应,增加植株抗氧化酶活性和脯氨酸含量,从而提高植物耐冷性。内生细菌Serratia marcescens SRM在4℃低温条件下仍具有相当稳定的促生属性,其定殖小麦后可显著改善小麦营养吸收状况,提高小麦生物量,增强耐寒性 [64]。低温胁迫条件下接种内生细菌Burkholderia phytofirmans PsJN也可显著增加葡萄(Vitis vinifera)的根长及生物量,提高其耐冷性 [78]。

3.4. 内生细菌对植物耐瘠性的影响

内生细菌可促进不利环境条件下植物的萌发及种群建立 [78]。Puente等(2009) [47] 研究表明内生细菌Bacillus sp. SENDO 6、Acinetobacter sp. SENDO1和Pseudomonas sp. SENDO 2在岩生植物武伦柱(Pachycereus pringlei)的幼苗形态建成及生长发育过程中扮演了重要角色,可协助其生长于裸露岩石;实验室分析表明缺乏内生细菌的幼苗表现更小,其在干重、根长和苗高上差异显著。接种内生细菌Klebsiella pneumonia Kp342,可缓解特伦顿小麦在氮肥缺乏情况下的氮缺失症状,显著增加根、茎干重、提高叶绿素水平 [67]。类似的是,固氮内生菌也可缓解甘薯(Ipomoea batatas)在氮贫瘠土壤上生长的不利影响 [79]。Dalton等(2004) [80] 研究表明,生长于营养贫乏沙丘上的草本栖居有大量Pseudomonas、Stenotrophomonas和Burkholderia属菌株,分析表明Burkholderia属内生细菌有助于沙丘草本吸收、利用氮。

3.5. 内生细菌对植物抗病性的影响

世界农业每年因病原菌感染面临巨大损失,而利用微生物控制疾病发生是最有希望的防治策略之一。众多研究表明,内生细菌可通过拮抗、生态位竞争及诱导植物防御反应等手段帮助宿主植物远离有害微生物 [17] [73]。Ramesh等(2009) [45] 从茄子(Solanum melongena)、黄瓜和花生(Arachis hypogaea)中分离获得Pseudomonas sp. EB 9、EB67,Enterobacter sp. EB 44、EB 89和Bacillus sp. EC 4、EC13等内生细菌菌株,能够产生抗生素2, 4-二乙酰基间苯三酚(DAPG),可抑制病原菌生长;温室试验中通过接种茄子,发现能够显著降低茄青枯菌(Ralstonia solanacearum)的发病率,改善幼苗生长。内生细菌Bacillus subtilis EDR4接种小麦后可降低小麦全蚀病(Gaeumannomyces graminsis)对小麦生长的影响,进而增加其植株高度、每穗种子数及千粒重,增强抗病性 [33]。温室实验中,分离自黄瓜根部的Actinoplanes campanulatusMicromonospora chalceaStreptomyces spiralis可拮抗瓜果腐霉(Pythium aphanidermatum)引起的腐霉病,保护黄瓜幼苗和成株 [24]。龙良鲲(2003) [81] 研究表明,内生细菌Bacillus subtilis 01-144能够定殖番茄根茎内,进而与青枯病菌竞争生态位点,可有效抑制番茄青枯病发生。内生细菌Bacillus subtilis EBS05可使烟草获得对烟草花叶病毒(TMV)的系统抗性,其对TMV具有稳定抑制活性,防治效果达67.38% [36]。

3.6. 内生细菌对植物抗虫性的影响

研究表明,内生菌在植物耐虫性上具有正向作用 [82] [83];Kloepper等(1991) [84] 进一步指出农作物相关的一些根际及内生细菌拥有拮抗植物病原线虫的能力。目前,对于害虫防治研究最多的是重组内生细菌Clavibacterxyli subsp. cynodontis,其能够表达源于Bacillus thuringiensiscryIA基因,生成内毒素拮抗欧洲玉米螟(Ostrinia nubilalis) [17]。接种分离自线虫拮抗植物万寿菊(Tageteserecta)和孔雀草(Tagetes patula)的内生细菌Microbacteriumesteraromaticum TP3和Kocuria varians TE4可降低马铃薯(Solanum tuberosum)根区根腐线虫(Pratylenchus penetrans)的群体密度,从而维持马铃薯产量稳定 [26]。

3.7. 内生细菌对植物抗重金属毒害的影响

重金属在土壤中具有低迁移率特性 [86] [87],不易被植物吸收利用,从而严重阻碍了植物修复进程;而内生细菌可提高重金属溶解态含量,改善根际重金属生物利用度 [88] [89]。Sheng 等(2008) [27] 研究报道,分离自油菜(Brassica campestris)的内生细菌Pseudomonas fluorescens G10和Microbacterium sp. G16具有溶解铅的潜力,可提高土壤中水溶性铅含量,从而提高植物修复效率。内生细菌Rahnella sp. JN6高耐镉(Cd)、锌(Zn)和铅(Pb)胁迫,具有活化土壤中碳酸镉、碳酸铅和磷酸锌能力,其定殖油菜后可促进油菜生长,提高油菜对 Cd、Pb、Zn的吸收 [70]。此外,研究也发现内生细菌还能分泌多种有机配位体与体内重金属结合,改变重金属的存在形态,促进重金属在植物组织器官间转运,从而增强重金属在植物组织中的利用。接种内生细菌Methylobacterium oryzae CBMB 20和Burkholderia sp. CBMB 40可促进重金属离子镍(Ni)和镉在番茄(Solanum lycopersicum)茎叶内的转运,提高番茄茎叶中重金属含量 [59]。万勇(2012) [90] 从龙葵(Solanum nigrum)根部分离到一株内生细菌Serratia nematodiphila LRE07,具有多重重金属耐性,接种龙葵后能提高植物重金属抗性,显著增加植株分蘖数和叶片数,从而使单株植物重金属镉提取量增加,提高植物修复效率。

3.8. 内生细菌对植物耐有机污染物的影响

研究表明,内生细菌与植物相互作用能够增强植物对除草剂、甲苯等有机污染物的修复能力,减轻有机污染物对植物毒害作用 [49] [52]。Germaine等(2006) [49] 研究表明豌豆(Pisumsativum)接种内生细菌Pseudomonas putida VM1450能有效降解杀虫剂2,4-二氯苯氧乙酸(2,4-D)对植株造成的危害,在高水平2,4-二氯苯氧乙酸胁迫下可维持其根部系统正常发育,增加植物生物量。刘爽(2012) [71] 从多环芳烃(PAHs)污染区看麦娘(Alopecurus aequalis)植株中分离获得一株高效降解菲的内生细菌Naxibacter sp. Pn 2,其能成功定殖黑麦草,促进黑麦草吸收环境中的菲,去除率为89.09%。在400 mg/L三氯乙烯(TCE)胁迫条件下,接种内生细菌Pseudomonas putida W619-TCE于白杨(Populus alba)插条,可显著降低其根和叶中的TCE含量,减缓其对植物的毒性 [50]。

4. 内生细菌提高植物抗逆性的机制

4.1. 内生细菌改善植物生长环境

最近研究表明,内生细菌与其宿主植物交互协同作用可改善植物生长环境,促使植物生长及种群建立。Puente等(2009) [47] 研究表明,内生细菌与岩生植物武伦柱相互作用利于其定殖裸露岩石和生长,内生细菌主要通过释放大量必须养分满足幼苗在岩石上的生长、发育,进而利于土壤母质形成。某些内生细菌具有代谢多样性,可通过特殊代谢途径降解环境中有毒组分,如:三氯乙烯 [91],2,4-二氯苯氧乙酸 [49],2,4,6-三硝基甲苯(TNT) [52] 和菲 [71] 等,从而降低其对植物毒性,提高植物耐受性。此外,部分内生细菌也能通过直接拮抗或生态位竞争等手段保护宿主植物远离有害微生物 [81] 和病原线虫 [26] 的侵害,改善植物生长条件,提高植物病虫害耐受性。

4.2. 内生细菌改变植物形态结构

植物相关微生物在其根部形态建成过程中扮演了重要角色,能促进根部生长 [92] 和生物量提高及侧根和根毛形成 [93] [94] [95] [96],进而增加根系总吸收面积,利于植物在水分和营养上的吸收。内生细菌Pseudomonas putida VM 1450侵染豌豆幼苗后利于其根系统在胁迫条件下维持正常形态构成,避免根端膨大和胼胝质形成 [49]。内生细菌侵染也能促使植物在胁迫条件下增加根长及生物量,从而提高植物耐旱性 [73]、耐寒性 [64] [74] 及重金属耐性 [41] 等。叶片叶绿素含量是植物光合活性的基础,是植物光合最关键因子之一,通常作为植物胁迫程度的指标参数 [97],而研究表明内生细菌侵染通常能够增加宿主植物叶片数、叶长及叶绿素a、叶绿素b、类胡箩卜素含量等,从而提高植物耐盐性 [42] [54] [53]、重金属耐性 [65] 和耐贫瘠性 [67] 等。在细胞水平,生防内生细菌定殖植物体也可诱导植物细胞壁改变,如:形成胼胝质和酚类化合物,从而限制病原菌侵染,提高植物抗病性 [98] [99]。

4.3. 内生细菌改善植物养分吸收利用

内生细菌和植物相互作用,可协助植物建立内生态恢复系统 [100],促进植物根部发育、增加植物营养吸收或改善营养元素利用等手段增强植物利用土壤养分能力 [101],提高环境胁迫耐性。内生固氮细菌K. pneumonia Kp342侵染农作物后能够缓解其氮缺失症状 [67],增加农作物产量 [102]。内生细菌S. marcescens SRM侵染小麦后能显著促进小麦根生长,改善小麦幼苗的营养吸收能力,增加氮、磷、钾吸收量,增强小麦耐冷性 [64]。在盐分胁迫条件下,内生细菌也可增强植物液泡膜Na+/K+逆向转运蛋白活性,显著缓解因Na+累积而引起的K+降低,从增强耐盐性 [54],但对Mg2+和Ca2+等二价金属离子含量的减少没有显著影响。重金属胁迫条件下,部分内生细菌即能通过促进植物生长,提高宿主植物对土壤重金属离子的吸收 [70],也可通过改变土壤重金属离子生物利用度,提高重金属离子在茎叶中转移速率 [27] [89] [103],增强植物重金属抗性;此外内生细菌也能通过吸收微量元素锌和铁,减缓重金属胁迫诱导的植物体金属离子变化,增强重金属抗性 [104]。

4.4. 内生细菌改善植物酶活性和次生代谢产物产生

众多研究表明,内生细菌对维持植物细胞膜结构完整性和稳定性发挥了重要作用,可显著提高植物抗氧化酶活性和脯氨酸含量,从而提高植物抗寒性 [25]、抗病性 [32] 和重金属耐性 [41];另外,某些内生菌还可通过表面吸附和积累等手段将重金属转运到其细胞内,降低重金属对植物的伤害 [105]。植物体内的水解酶类与植物抗病性密切相关,研究表明内生细菌也能通过产生多种水解酶类,如纤维素酶、几丁质酶、葡聚糖酶、果胶酶、蛋白酶等,提高植物抗病性 [24] [32]。内生细菌侵染植物后也能通过部分次生代谢产物,增强植物抗逆性,如产生DAPG等抗生素类物质 [45] 和酚类物质 [106] 等提高抗病性;产生δ-内毒素,提高抗虫性 [107] [108] 或增加脯氨酸和碳水化合物含量,提高耐冷性 [60]。众多研究表明,假单胞菌属、肠杆菌属、葡萄球菌属、固氮菌属(Azotobacter)和固氮螺菌属(Azospirillum)细菌具有产玉米素和细胞分裂素能力,可影响植物生长发育 [85] [110]。Idris等(2004) [111] 研究表明,相比根际细菌,内生细菌在调节植物荷尔蒙水平方面具有更为重要作用。尤其是产ACC脱氨酶活性的内生细菌,在胁迫水平下可降低胁迫诱导产生的乙烯水平,从而提高植物抗逆性 [59] [63]。

4.5. 内生细菌诱导植物抗逆基因表达

最近众多研究表明,有益细菌接种可改变植物相关基因表达 [69] [112]。Chi等(2010) [113] 利用蛋白质组法也证明植物在内生菌存在条件下,相关Rubisaco活性蛋白、丙酮酸正磷酸激酶、核酸编码蛋白及叶绿体营养吸收的相关基因上调,从而刺激植物光合系统活性。周蕊(2013) [36] 研究表明,内生细菌Bacillus subtilis EBS05的代谢活性物质Surfactin A是EBS05发挥生防作用的关键因子,可诱导植物SA信号传导途径相关的NPR1、PR1aPR1b基因持续超量表达及JA/ET信号传导途径的PDF1.2基因瞬时超量表达,其存在SA信号传导途径与JA/ET信号传导途径间的交叉协同作用,从而使内生细菌EBS05对烟草花叶病毒具有稳定抑制活性。CaACCO基因 [114] 和CaLTPI基因 [115] 能被干旱、高盐、低温等胁迫条件下被强烈诱导,可分别在番茄和辣椒中转录激活下游信号通路从而提高其抗逆性。研究表明,45% PEG 6000适度渗透胁迫条件下,辣椒接种内生细菌Arthrobacter sp. EZB4或Bacillus sp. EZB 8,可显著降低胁迫诱导基因CaACCO、CaLTPI的上调,进而提高耐旱性 [28]。

5. 展望及存在问题

前期人们主要通过植物基因工程技术来改善植物生长和农作产量及品质提高,但随着“农业可持续发展”及“环境友好型社会”概念的提出,急需开发一种新技术去应对环境变化带来的各种危害。综上所述,内生细菌作为植物微生态系统的天然组分,具有促进植物生长,增加植物营养吸收,抑制植物病原菌生长,提高植物环境胁迫耐性的特性。因此,内生细菌在改良植物胁迫抗性上具有重要应用价值,是未来开发利用的重要方向。

尽管内生细菌在植物生长发育和植物健康上具有重要作用,但多重因素限制了内生细菌的开发利用,其仍需大量且深入的研究。首先,植物–内生细菌有益特性具有专一性,其在一个宿主植物上的有益效应,不易移植到别的宿主植物上,这种特性的深度理解能够帮助我们应用专一菌株接种提高产量。其次,内生细菌赋予宿主植物的有益特性可能是细菌众多促生属性互作的共同结果,其每一次互作都是独特的,没有简单规程可理解其有益效应的产生。第三,截至目前,在实验室或温室水平获得了大量具有促生属性的内生细菌,但其在大田条件下难以表现出始终如一的促生属性,其定植水平及促生效应可能受到宿主植物、相关微生物和环境条件的协同调节,仍然缺乏足够认知。第四,目前关于植物内生细菌多样性和物种组成的理解已取得巨大进步,但植物–内生细菌相互作用的准确机制阐述尚不明确,利用新的方法和技术如蛋白质组学、转录组学和代谢组学研究植物–内生菌群体的相互作用值得深入。第五,地球环境组成具有极端复杂多样性,依据“生境适应性共生”理论,我们有必要继续筛选不同环境、不同植物的内生细菌物种,扩大内生细菌物种多样性,建立内生细菌–植物–逆境数据库。

文章引用

强梦轲,徐奕卓,高 蕊. 植物内生细菌介导的植物抗逆性研究进展
Research Progress in Stress Resistance of Plants Mediated by Endophytic Bacteria[J]. 植物学研究, 2020, 09(03): 226-239. https://doi.org/10.12677/BR.2020.93027

参考文献

  1. 1. Berg, G., Zachow, C., Müller, H., et al. (2013) Next-Generation Bio-Products Sowing the Seeds of Success for Sus-tainable Agriculture. Agronomy, 3, 648-656. https://doi.org /10.3390/agronomy3040648

  2. 2. Mendes, R., Gar-beva, P. and Raaijmakers, J.M. (2013) The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiology Reviews, 37, 634-663. https://doi.org /10.1111/1574-6976.12028

  3. 3. Hardoim, P.R., Overbeek, L.S.V. and Elsas, J.D.V. (2008) Prop-erties of Bacterial Endophytes and Their Proposed Role in Plant Growth. Trends in Microbiology, 16, 467-471. https://doi.org /10.1016/j.tim.2008.07.008

  4. 4. Triplett, E.W. (1996) Diazotrophic Endophytes: Progress and Prospects for Nitrogen Fixation in Monocots. Plant and Soil, 186, 29-38. https://doi.org /10.1007/BF00035052

  5. 5. Harish, S., Kavino, M., Kumar, N., et al. (2009) Induction of Defense-Related Proteins by Mixtures of Plant Growth Promoting Endophytic Bacteria against Banana bunchy top Virus. Biological Control, 51, 16-25. https://doi.org /10.1016/j.biocontrol.2009.06.002

  6. 6. Carroll, G. (1988) Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont. Ecology, 69, 2-9. https://doi.org /10.2307/1943154

  7. 7. Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. 3rd Edition, Academic Press, San Diego.

  8. 8. 孙吉庆, 刘润进, 李敏. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J]. 植物生理学报, 2012, 48(9): 845-852

  9. 9. Long, S.R. (1996) Special Review Issue on Plant-Microbe Interactions. Rhizobium Symbiosis: Nod Factors in Perspective. The Plant Cell, 8, 1885-1898. https://doi.org /10.1105/tpc.8.10.1885

  10. 10. Wang, D., Yang, S., Tang, F., et al. (2012) Symbiosis Specificity in the Legume: Rhizobial Mutualism. Cellular Microbiology, 14, 334-342. https://doi.org /10.1111/j.1462-5822.2011.01736.x

  11. 11. Lucero, M.E., Barrow, J.R., Osuna, P., et al. (2006) Plant-Fungal Interactions in Arid and Semi-Arid Ecosystems: Large-Scale Impacts from Microscale Processes. Journal of Arid Environments, 65, 276-284. https://doi.org /10.1016/j.jaridenv.2005.08.014

  12. 12. Barrow, J.R., Lucero, M.E., Reyes-Vera, I., et al. (2008) Do Symbiotic Microbes Have a Role in Plant Evolution, Performance and Response to Stress? Communicative and Inte-grative Biology, 1, 69-73. https://doi.org /10.4161/cib.1.1.6238

  13. 13. Rodriguez, R.J., et al. (2009) Fungal Endophytes: Diversity and Func-tional Roles. New Phytologist, 182, 314-330. https://doi.org /10.1111/j.1469-8137.2009.02773.x

  14. 14. 梁宇, 高玉葆. 内生真菌对植物生长发育及抗逆性的影响[J]. 植物学通报, 2000(1): 52-59.

  15. 15. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., et al. (1997) Bacterial Endophytes in Agricultural Crops. Canadian Journal of Microbiology, 43, 895-914. https://doi.org /10.1139/m97-131

  16. 16. Kobayashi, D.Y. and Palumbo, J.D. (2000) Bacterial Endophytes and Their Effects on Plants and Uses in Agriculture. In: Bacon, C.W. and White, J.F., Eds., Microbial Endophytes, Springer, New York, 199-233.

  17. 17. Lodewyckx, C., Vangronsveld, J., Porteous, F., et al. (2002) Endophytic Bacteria and Their Potential Applications. Critical Reviews in Plant Sciences, 21, 583-606. https://doi.org /10.1080/0735-260291044377

  18. 18. Adhikari, T.B., Joseph, C.M., Yang, G., Phillips, D.A. and Nelson, L.M. (2001) Evaluation of Bacteria Isolated from Rice for Plant Growth Promotion and Biological Control of Seedling Disease of Rice. Canadian Journal of Microbiology, 47, 916-924. https://doi.org /10.1139/w01-097

  19. 19. Cook, R.J., Tho-mashow, L.S., Weller, D.M., et al. (1995) Molecular Mechanisms of Defense by Rhizobacteria against Root Disease. Proceedings of the National Academy of Sciences of the United States of America, 92, 4197-4201. https://doi.org /10.1073/pnas.92.10.4197

  20. 20. Doty, S.L., Oakley, B., Xin, G., et al. (2009) Diazotrophic Endo-phytes of Native Black Cottonwood and Willow. Symbiosis, 47, 23-33. https://doi.org /10.1007/BF03179967

  21. 21. Moore, F.P., Barac, T., Borremans, B., et al. (2006) Endophytic Bacterial Diversity in Poplar Trees Growing on a BTEX-Contaminated Site: The Characterisation of Isolates with Potential to Enhance Phy-toremediation. Systematic & Applied Microbiology, 29, 539-556. https://doi.org /10.1016/j.syapm.2005.11.012

  22. 22. Ryan, R.P., Kieran, G., Ashley, F., et al. (2008) Bacterial Endophytes: Recent Developments and Applications. FEMS Microbiology Letters, 78, 1-9. https://doi.org /10.1111/j.1574-6968.2007.00918.x

  23. 23. Strobel, G., Daisy, B., Castillo, U., et al. (2004) Natural Products from En-dophytic Microorganisms. Journal of Natural Products, 67, 257-268. https://doi.org /10.1021/np030397v

  24. 24. El-Tarabily, K.A., Nassar, A.H., Hardy, G.E.St., et al. (2009) Plant Growth Promotion and Biological Control of Pythium aphanidermatum, a Pathogen of Cucumber, by Endophytic Actinomycetes. Journal of Applied Microbiology, 106, 13-26. https://doi.org /10.1111/j.1365-2672.2008.03926.x

  25. 25. Ding, S., Huang, C.L., Sheng, H.M., et al. (2011) Effect of Inoculation with the Endophyte Clavibacter sp. Strain Enf12 on Chilling Tolerance in Chorispora bungeana. Physiologia Plantarum, 141, 141-151. https://doi.org /10.1111/j.1399-3054.2010.01428.x

  26. 26. Sturz, A.V. and Kimpinski, J. (2004) Endoroot Bacteria Derived from Marigolds (Tagetes spp.) Can Decrease Soil Population Densities of Root-Lesion Nematodes in the Po-tato Root Zone. Plant & Soil, 262, 241-249. https://doi.org /10.1023/B:PLSO.0000037046.86670.a3

  27. 27. Sheng, X.F., Xia, J.J., Jiang, C.Y., et al. (2008) Characterization of Heavy Metal-Resistant Endophytic Bacteria from Rape (Brassica napus) Roots and Their Potential in Promoting the Growth and Lead Accumulation of Rape. Environmental Pollution, 156, 1164-1170. https://doi.org /10.1016/j.envpol.2008.04.007

  28. 28. Sziderics, A.H., Rasche, F., Trognitz, F., et al. (2007) Bacterial Endophytes Contribute to Abiotic Stress Adaptation in Pepper Plants (Capsicum annuum L.). Canadian Journal of Microbiology, 53, 1195-1202. https://doi.org /10.1139/W07-082

  29. 29. Mastretta, C., Barac, T., Vangronsveld, J., et al. (2006) Endophytic Bacte-ria and Their Potential Application to Improve the Phytoremediation of Contaminated Environments. Biotechnology and Genetic Engineering Reviews, 23, 175-188. https://doi.org /10.1080/02648725.2006.10648084

  30. 30. Yandigeri, M.S., Meena, K.K., Singh, D., et al. (2012) Drought-Tolerant Endophytic Actinobacteria Promote Growth of Wheat (Triticum aestivum) under Water Stress Conditions. Plant Growth Regulation, 68, 411-420. https://doi.org /10.1007/s10725-012-9730-2

  31. 31. 高小宁. 植物内生细菌菌株Em7对油菜菌核病的防治研究[D]: [博士学位论文]. 杨凌: 西北农林科技大学, 2012.

  32. 32. 陈炜. 植物内生细菌BS-2和TB2在荔枝体内的定殖及对荔枝霜霉病的防治[D]: [硕士学位论文]. 福州: 福建农林大学, 2009.

  33. 33. Liu, B., Huang, L., Kang, Z., et al. ( 2011) Evaluation of Endophytic Bacterial Strains as Antagonists of Take-All in Wheat Caused by Gaeumannomyces graminis var. tritici in Greenhouse and Field. Journal of Pest Science, 84, 257-264. https://doi.org /10.1007/s10340-011-0355-4

  34. 34. 余建. 柑橘内生细菌YS-45在油菜上的定殖及对菌核病的防效[D]: [硕士学位论文]. 长沙: 湖南农业大学, 2008.

  35. 35. 孙洋. 内生细菌BS-315对苹果斑点落叶病菌的防治作用研究[D]: [硕士学位论文]. 保定: 河北农业大学, 2010.

  36. 36. 周蕊. 内生细菌EBS05诱导烟草抗TMV机理的研究[D]: [硕士学位论文]. 郑州: 河南农业大学, 2013.

  37. 37. 钮旭光, 韩梅, 宋立超, 肖亦农. 翅碱蓬内生细菌鉴定及耐盐促生作用研究[J]. 沈阳农业大学学报, 2011, 42(6): 698-702.

  38. 38. 张艳峰. 金属耐性植物内生细菌对油菜耐受与富集重金属的影响及其机制研究[D]: [博士学位论文]. 南京: 南京农业大学, 2011.

  39. 39. 刘莉华, 刘淑杰, 陈福明, 杨小龙, 杨春平, 吴秉奇, 张淼, 赵晶晶. 接种内生细菌对龙葵吸收积累镉的影响[J]. 环境科学学报, 2013, 33(12): 3368-3375.

  40. 40. 潘风山, 陈宝, 马晓晓, 杨肖娥, 冯英. 一株镉超积累植物东南景天特异内生细菌的筛选及鉴定[J]. 环境科学学报, 2014, 34(2): 449-456.

  41. 41. 孙乐妮. 铜耐性植物内生和根际细菌的生物多样性及其强化植物富集铜的研究[D]: [博士学位论文]. 南京: 南京农业大学, 2009.

  42. 42. 韩坤, 田曾元, 刘珂, 张佳夜, 常银银, 郭予琦. 具有ACC脱氨酶活性的海滨锦葵(Kosteletzkya pentacarpos)内生细菌对小麦耐盐性的影响[J]. 植物生理学报, 2015, 51(2): 212-220.

  43. 43. 洪永聪, 辛伟, 来玉宾, 翁昕, 胡方平. 茶树内生防病和农药降解菌的分离[J]. 茶叶科学, 2005(3): 183-188.

  44. 44. Babu, A.G., Kim, J.D. and Oh, B.T. (2013) Enhancement of Heavy Metal Phytore-mediation by Alnusfirma with Endophytic Bacillus thuringiensis GDB-1. Journal of Hazardous Materials, 250-251, 477-483. https://doi.org /10.1016/j.jhazmat.2013.02.014

  45. 45. Ramesh, R., Joshi, A.A. and Ghanekar, M.P. (2009) Pseu-domonads: Major Antagonistic Endophytic Bacteria to Suppress Bacterial wilt Pathogen, Ralstonia solanacearum in the Eggplant (Solanum melongena L.). World Journal of Microbiology & Biotechnology, 25, 47-55. https://doi.org /10.1007/s11274-008-9859-3

  46. 46. Mei, C. and Flinn, B. (2010) The Use of Beneficial Microbial Endophytes for Plant Biomass and Stress Tolerance Improvement. Recent Patents on Biotechnology, 4, 81-95. https://doi.org /10.2174/187220810790069523

  47. 47. Puente, M.E., Li, C.Y. and Bashan, Y. (2009) Endophytic Bacteria in Cacti Seeds Can Improve the Development of Cactus Seedlings. Environmental and Experimental Botany, 66, 402-408. https://doi.org /10.1016/j.envexpbot.2009.04.007

  48. 48. Ye, B., Saito, A. and Minamisawa, K. (2006) Effect of In-oculation with Anaerobic Nitrogenixing Consortium on Salt Tolerance of Miscanthus sinensis. Soil Science and Plant Nutrition, 51, 243-249. https://doi.org /10.1111/j.1747-0765.2005.tb00028.x

  49. 49. Germaine, K.J., Liu, X., Cabellos, G.G., et al. (2006) Bacterial Endophyte-Enhanced Phytoremediation of the Organochlorine Herbicide 2,4-Dichlorophenoxyacetic Acid. FEMS Microbiology Ecology, 57, 302-310. https://doi.org /10.1111/j.1574-6941.2006.00121.x

  50. 50. Weyens, N., Truyens, S., Dupae, J., et al. (2010) Poten-tial of the TCE-Degrading Endophyte Pseudomonas pitida W619-TCE to Improve Plant Growth and Reduce TCE Phytotoxicity and Evapotranspiration in Poplar Cuttings. Environmental Pollution, 158, 2915-2919. https://doi.org /10.1016/j.envpol.2010.06.004

  51. 51. Pavlo, A., Leonid, O., Iryna, Z., et al. (2011) Endophytic Bacteria Enhancing Growth and Disease Resistance of Potato (Solanum tuberosum L.). Biological Control, 56, 43-49. https://doi.org /10.1016/j.biocontrol.2010.09.014

  52. 52. Taghavi, S., Barac, T., Greenberg, B., et al. (2005) Horizontal Gene Transfer to Endogenous Endophytic Bacteria from Poplar Improves Phytoremediation of Toluene. Applied and Environmental Microbiology, 71, 8500-8505. https://doi.org /10.1128/AEM.71.12.8500-8505.2005

  53. 53. 滕松山. 具ACC脱氨酶活性的碱蓬内生细菌对植物的解盐促生作用及其ACC脱氨酶基因的克隆[D]: [硕士学位论文]. 济南: 山东师范大学, 2011.

  54. 54. Ozawa, T., Wu, J.M. and Fujii, S. (2007) Effect of Inoculation with a Strain of Pseudomonas pseudoalcaligenes Isolated from the Endorhizosphere of Salicornia europea on Salt Tolerance of the Glasswort. Soil Science and Plant Nutrition, 53, 12-16. https://doi.org /10.1111/j.1747-0765.2007.00098.x

  55. 55. 陈小兵, 盛下放, 何琳燕, 江春玉, 孙乐妮, 马海燕. 具菲降解特性植物内生细菌的分离筛选及其生物学特性[J]. 环境科学学报, 2008(7): 1308-1313.

  56. 56. 李春宏. 棉花抗病内生细菌的分离及其对黄萎病的生物防治[D]: [博士学位论文]. 南京: 南京农业大学, 2010.

  57. 57. 葛米红. 利用内生细菌防治水稻白叶枯病的研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2008.

  58. 58. 赵希俊. 内生细菌提高茶树耐铝毒特性的调控效应[D]: [硕士学位论文]. 福州: 福建农林大学, 2014.

  59. 59. Kuklinsky-Sobral, J., Araújo, W.L., Mendes, R., et al. (2004) Isolation and Characterization of Soybean-Associated Bacteria and Their Potential for Plant Growth Promotion. Environmental Microbiology, 6, 1244-1251. https://doi.org /10.1111/j.1462-2920.2004.00658.x

  60. 60. AitBarka, E., Nowak, J. and Clement, C. (2006) Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium, Burkholderia phytofirmans Strain PsJN. Applied and Environmental Microbiology, 72, 7246-7252. https://doi.org /10.1128/AEM.01047-06

  61. 61. Ren, J.H., Ye, J.R., Liu, H., et al. (2011) Isolation and Characterization of a New Burkholderia pyrrocinia Strain JK-SH007 as a Potential Biocontrol Agent. World Journal of Microbiology & Biotechnology, 27, 2203-2215. https://doi.org /10.1007/s11274-011-0686-6

  62. 62. Van Aken, B., Yoon, J.M. and Schnoor, J.L. (2004) Biodegradation of Nitro-Substituted Explosives 2,4,6-Trinitrotoluene, Hexahydro-1,3,5-trinitro-1,3,5-triazine, and Octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a Phytosymbiotic Methylobacterium sp. Associated with Poplar Tissues (Populus deltoides x nigra DN34). Applied and Environmental Microbiology, 70, 508-517. https://doi.org /10.1128/AEM.70.1.508-517.2004

  63. 63. Madhaiyan, M., Poonguzhali, S. and Sa, T. (2007) Metal Tolerating Methylotrophic Bacteria Reduces Nickel and Cadmium Toxicity and Promotes Plant Growth of Tomato (Lycopersicon esculentum L.). Chemosphere, 69, 220-228. https://doi.org /10.1016/j.chemosphere.2007.04.017

  64. 64. Selvakumar, G., Mohan, M., Kundu, S., et al. (2008) Cold Tolerance and Plant Growth Promotion Potential of Serratia marcescens Strain SRM (MTCC 8708) Isolated from Flowers of Summer Squash (Cucurbita pepo). Letters in Applied Microbiology, 46, 171-175. https://doi.org /10.1111/j.1472-765X.2007.02282.x

  65. 65. Luo, S., Wan, Y., Xiao, X., et al. (2011) Isolation and Characterization of Endophytic Bacterium LRE07 from Cadmium Hyperaccumulator Solanum nigruml and Its Potential for Remediation. Applied Microbiology and Biotechnology, 89, 1637-1644. https://doi.org /10.1007/s00253-010-2927-2

  66. 66. Berg, G., Krechel, A., Ditz, M., et al. (2005) Endophytic and Ectophytic Potato-Associated Bacterial Communities Differ in Structure and Antagonistic Function against Plant Pathogenic Fungi. FEMS Microbiology Ecology, 51, 215-229. https://doi.org /10.1016/j.femsec.2004.08.006

  67. 67. Iniguez, A.L., Dong, Y., Triplett, E.W., et al. (2004) Nitrogen Fixation in Wheat Provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions, 17, 1078-1085. https://doi.org /10.1094/MPMI.2004.17.10.1078

  68. 68. Li, W.C., Ye, Z.H. and Wang, M.H. (2007) Effects of Bacteria an Enhanced Metal Uptake of the Cd/Zn-Hyperaccumulating Plant, Sedum alfredii. Journal of Experimental Botany, 58, 4173-4182. https://doi.org /10.1093/jxb/erm274

  69. 69. Wang, Y., Yamazoe, A., Suzuki, S., et al. (2004) Isolation and Characterization of Dibenzofuran-Degrading Comamonas sp. Strains Isolated from White Clover Roots. Current Microbiology, 49, 288-294. https://doi.org /10.1007/s00284-004-4348-x

  70. 70. He, H., Ye, Z., Yang, D., et al. (2013) Characterization of Endophytic Rahnella sp. JN6 from Polygonum pubescens and Its Potential in Promoting Growth and Cd, Pb, Zn Uptake by Brassica napus. Chemosphere, 90, 1960-1965. https://doi.org /10.1016/j.chemosphere.2012.10.057

  71. 71. 刘爽. 具有菲降解性能的植物内生细菌Pn2分离鉴定、降解条件优化及其定殖初探[D]: [硕士学位论文]. 南京: 南京农业大学, 2012.

  72. 72. Marulanda, A., Porcel, R., Barea, J.M., et al. (2007) Drought Tolerance and Antioxidant Activities in Lavender Plants Colonized by Native Drought-tolerant or Drought-Sensitive Glomus Species. Microbial Ecology, 54, 543-552. https://doi.org /10.1007/s00248-007-9237-y

  73. 73. Peer, R.V. (1991) Induced Resistance and Phytoalexin Accumulation in Biological Control of Fusarium Wilt of Carnation by Pseudomonas sp. Strain WCS417r. Phytopathology, 81, 728-734. https://doi.org /10.1094/Phyto-81-728

  74. 74. AitBarka, E. and Audran, J.C. (1997) Response of Champenoise Grapevine to Low Temperatures: Changes of Shoot and Bud Proline Concentrations in Response to Low Temperatures and Correlations with Freezing Tolerance. Journal of Horticultural Science, 72, 577-582. https://doi.org /10.1080/14620316.1997.11515546

  75. 75. Hu, W.H., Shi, K., Song, X.S., et al. (2006) Different Effects of Chilling on Respiration in Leaves and Roots of Cucumber (Cucumis sativus). Plant Physiology and Biochemistry (Paris), 44, 837-843. https://doi.org /10.1016/j.plaphy.2006.10.016

  76. 76. Fortunato, A.S., Lidon, F.C., Batista-Santos, P., et al. (2010) Biochemical and Molecular Characterization of the Antioxidative System of Coffea sp. under Cold Conditions in Genotypes with Contrasting Tolerance. Journal of Plant Physiology, 167, 333-342. https://doi.org /10.1016/j.jplph.2009.10.013

  77. 77. 丁硕. 冰缘植物内生细菌与高山离子芥抗寒性关系的研究[D]: [博士学位论文]. 兰州: 兰州大学, 2011.

  78. 78. Arshad, M. and Frankenberger, W.T. (1991) Microbial Production of Plant Hormones. Plant and Soil, 133, 1-8. https://doi.org /10.1007/978-94-011-3336-4_71

  79. 79. Reiter, B., Burgmann, H., Burg, K., et al. (2003) Endophytic nifH Gene Diversity in African Sweet Potato. Canadian Journal of Microbiology, 49, 549-555. https://doi.org /10.1139/w03-070

  80. 80. Dalton, D.A., Kramer, S., Azios, N., et al. (2004) Endophytic Nitrogen Fixation in Dune Grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiology Ecology, 49, 469-479. https://doi.org /10.1016/j.femsec.2004.04.010

  81. 81. 龙良鲲, 肖崇刚. 内生细菌01-144在番茄根茎内定殖的初步研究[J]. 微生物学通报, 2003(5): 53-56.

  82. 82. Schardl, C.L., Leuchtmann, A. and Spiering, M.J. (2004) Symbioses of Grasses with Seedborne Fungal Endophytes. Annual Review of Plant Biology, 55, 315-340. https://doi.org /10.1146/annurev.arplant.55.031903.141735

  83. 83. Kuldau, G. and Bacon, C. (2008) Clavicipitaceous Endophytes: Their Ability to Enhance Resistance of Grasses to Multiple Stresses. Biological Control, 46, 57-71. https://doi.org /10.1016/j.biocontrol.2008.01.023

  84. 84. Kloepper, J.W., Rodríguez-Kábana, R., Mcinroy, J.A., et al. (1991) Analysis of Populations and Physiological Characterization of Microorganisms in Rhizospheres of Plants with Antagonistic Properties to Phytopathogenic Nematodes. Plant and Soil, 136, 95-102. https://doi.org /10.1007/BF02465224

  85. 85. Bent, E. and Chanway, C.P. (1998) The Growth-Promoting Effects of a Bacterial Endophyte on Lodgepole Pine Are Partially Inhibited by the Presence of Other Rhizobacteria. Canadian Journal of Microbiology, 44, 980-988. https://doi.org /10.1139/w98-097

  86. 86. Garbisu, C. and Alkorta, I. (2001) Phytoextraction: A Cost-Effective Plant-Based Technology for the Removal of Metals from the Environment. Bioresource Technology, 77, 229-236. https://doi.org /10.1016/S0960-8524(00)00108-5

  87. 87. Chen, Y., Shen, Z. and Li, X. (2004) The Use of Vetiver Grass (Vetiveria zizanioides) in the Phytoremediation of Soils Contaminated with Heavy Metals. Applied Geochemistry, 19, 1553-1565. https://doi.org /10.1016/j.apgeochem.2004.02.003

  88. 88. Yang, X., Feng, Y., He, Z., et al. (2005) Molecular Mechanisms of Heavy Metal Hyperaccumulation and Phytoremediation. Journal of Trace Elements in Medicine & Biology, 18, 339-353. https://doi.org /10.1016/j.jtemb.2005.02.007

  89. 89. Saravanan, V.S., Madhaiyan, M. and Thangaraju, M. (2007) Solubilization of Zinc Compounds by the Diazotrophic, Plant Growth Promoting Bacterium Gluconacetobacter diazotrophicus. Chemosphere, 66, 1794-1798. https://doi.org /10.1016/j.chemosphere.2006.07.067

  90. 90. 万勇. 内生细菌在重金属植物修复中的作用机理及应用研究[D]: [博士学位论文]. 长沙: 湖南大学, 2013.

  91. 91. Bankston, J.L., Sola, D.L., Komor, A.T., et al. (2002) Degradation of Trichloroethylene in Wetland Microcosms Containing Broad-Leaved Cattail and Eastern Cottonwood. Water Research, 36, 1539-1546. https://doi.org /10.1016/S0043-1354(01)00368-2

  92. 92. Tsavkelova, E.A., Cherdyntseva, T.A., Botina, S.G., et al. (2007) Bacteria Associated with Orchid Roots and Microbial Production of Auxin. Microbiological Research, 162, 69-76. https://doi.org /10.1016/j.micres.2006.07.014

  93. 93. Patten, C.L. and Glick, B.R. (2002) Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Applied and Environmental Microbiology, 68, 3795-3801. https://doi.org /10.1128/AEM.68.8.3795-3801.2002

  94. 94. Rajkumar, M., Lee, K.J., Lee, W.H., et al. (2005) Growth of Brassica juncea under Chromium Stress: Influence of Siderophores and Indole 3 Acetic Acid Producing Rhizosphere Bacteria. Journal of Environmental Biology, 26, 693-699.

  95. 95. Chakraborty, U., Chakraborty, B. and Basnet, M. (2006) Plant Growth Promotion and Induction of Resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology, 46, 186-195. https://doi.org /10.1002/jobm.200510050

  96. 96. Long, H.H., Schmidt, D.D. and Baldwin, I.T. (2008) Native Bacterial Endophytes Promote Host Growth in a Species-Specific Manner; Phytohormone Manipulations Do Not Result in Common Growth Responses. PLoS ONE, 3, e2702. https://doi.org /10.1371/journal.pone.0002702

  97. 97. Xiao, D., El-Alai, Y., Penrose, D.M., et al. (2004) Responses of Three Grass Species to Creosote during Phytoremediation. Environmental Pollution, 130, 453-463. https://doi.org /10.1016/j.envpol.2003.12.018

  98. 98. Benhamou, N. and Tuzun, K.S. (1998) Induction of Resistance against Fusarium Wilt of Tomato by Combination of Chitosan with an Endophytic Bacterial Strain: Ultrastructure and Cytochemistry of the Host Response. Planta, 204, 153-168. https://doi.org /10.1007/s004250050242

  99. 99. Benhamou, N., Gagne, S., Le Quere, D., et al. (2000) Bacterial-Mediated Induced Resistance in Cucumber: Beneficial Effect of the Endophytic Bacterium Serratia plymuthica on the Protection against Infection by Pythium ultimum. Phytopathology, 90, 45-56. https://doi.org /10.1094/PHYTO.2000.90.1.45

  100. 100. Glick, B.R., Karaturovíc, D.M. and Newell, P.C. (1995) A Novel Procedure for Rapid Isolation of Plant Growth Promoting Pseudomonads. Canadian Journal of Microbiology, 41, 533-536. https://doi.org /10.1139/m95-070

  101. 101. Whipps, J.M. and Whipps, J.M. (2001) Microbial Interactions and Biocontrol in the Rhizosphere. Journal of Experimental Botany, 52, 487-511. https://doi.org /10.1093/jxb/52.suppl_1.487

  102. 102. Riggs, P.J., Chelius, M.K., Iniguez, A.L., et al. (2001) Enhanced Maize Productivity by Inoculation with Diazotrophic Bacteria. Australian Journal of Plant Physiology, 28, 829-836. https://doi.org /10.1071/PP01045

  103. 103. Zhang, X., Lin, L., Zhu, Z., et al. (2013) Colonization and Modulation of Host Growth and Metal Uptake by Endophytic Bacteria of Sedum alfredii. International Journal of Phytoremediation, 15, 51-64. https://doi.org /10.1080/15226514.2012.670315

  104. 104. Mastretta, C., Taghavi, S., Daniel, V.D.L., et al. (2009) Endophytic Bacteria from Seeds of Nicotiana tabacum Can Reduce Cadmium Phytotoxicity. International Journal of Phytoremediation, 11, 251-267. https://doi.org /10.1080/15226510802432678

  105. 105. 马莹, 骆永明, 滕应, 李秀华. 内生细菌强化重金属污染土壤植物修复研究进展[J]. 土壤学报, 2013, 50(1): 195-202.

  106. 106. Shi, J., Liu, A., Li, X., et al. (2011) Inhibitory Mechanisms Induced by the Endophytic Bacterium MGY2 in Controlling Anthracnose of Papaya. Biological Control, 56, 2-8. https://doi.org /10.1016/j.biocontrol.2010.09.012

  107. 107. K, J., Downing, et al. (2000) Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genes in Sugarcane-Associated Bacteria. Applied and Environmental Microbiology, 66, 2804-2810. https://doi.org /10.1128/AEM.66.7.2804-2810.2000

  108. 108. Turner, J.T., Lampel, J.S., Stearman, R.S., et al. (1991) Stability of the δ-Endotoxin Gene from Bacillus thuringiensis subsp. kurstaki in a Recombinant Strain of Clavibacterxyli subsp. cynodontis. Applied & Environmental Microbiology, 57, 3522-3528. https://doi.org /10.1128/AEM.57.12.3522-3528.1991

  109. 109. Carlo, Leifert, Cindy, et al. (1994) Ecology of Microbial Saprophytes and Pathogens in Tissue Culture and Field-Grown Plants: Reasons for Contamination Problems in Vitro. Critical Reviews in Plant Sciences, 13, 139-183. https://doi.org /10.1080/07352689409701912

  110. 110. Bashan, Y.H. (1997) GAzosprillum-Plant Relationships: Environmental and Physiological Advances (1990-1996). The Canadian Journal of Microbiology, 43, 103-121. https://doi.org /10.1139/m97-015

  111. 111. Idris, R., Trifonova, R., Puschenreiter, M., et al. (2004) Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70, 2667-2677. https://doi.org /10.1128/AEM.70.5.2667-2677.2004

  112. 112. Cartieaux, F., Thibaud, M.C., Zimmerli, L., et al. (2003) Transcriptome Analysis of Arabidopsis Colonized by a Plant-Growth Promoting Rhizobacterium Reveals a General Effect on Disease Resistance. The Plant Journal, 36, 177-188. https://doi.org /10.1046/j.1365-313X.2003.01867.x

  113. 113. Chi, F., Shen, S., Cheng, H., et al. (2005) Ascending Migration of Endophytic Rhizobia, from Roots to Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology. Applied and Environmental Microbiology, 71, 7271-7278. https://doi.org /10.1128/AEM.71.11.7271-7278.2005

  114. 114. Garcia-Pineda, E. and Lozoya-Gloria, E. (1999) Induced Gene Expression of 1-Aminocyclopropane-1-carboxylic Acid (ACC Oxidase) in Pepper (Capsicum annuum L.) by Arachidonic Acid. Plant Science, 145, 11-21. https://doi.org /10.1016/S0168-9452(99)00065-5

  115. 115. Jung, H.W., Kim, W. and Wang, B.K. (2003) Three Pathogen Inducible Genes Encoding Lipid Transfer Protein from Pepper Are Differentially Activated by Pathogens, Abiotic, and Environmental Stress. Plant, Cell & Environment, 26, 915-928. https://doi.org /10.1046/j.1365-3040.2003.01024.x

  116. NOTES

    *同等贡献。

    #通讯作者。

期刊菜单