﻿ 大直径钢波纹管力学特性及参数分析 Analysis on Mechanical Properties and Parameters of Large-Sized Corrugated Steel Pipe

Hans Journal of Civil Engineering
Vol. 08  No. 05 ( 2019 ), Article ID: 31391 , 7 pages
10.12677/HJCE.2019.85116

Analysis on Mechanical Properties and Parameters of Large-Sized Corrugated Steel Pipe

Xiangyong Chen*, Ying Zhang

Huatian Engineering and Technology Corporation, MCC, Nanjing Jiangsu

Received: July 2nd, 2019; accepted: July 17th, 2019; published: July 24th, 2019

ABSTRACT

In order to study the mechanical properties of large-sized corrugated steel pipe, a 3D FE structural model was established by ANSYS software. Then, the main design parameters of corrugated pipe were analyzed to study its force and deformation characteristics under the influence of various factors. The results show that the maximum equivalent stress of the corrugated steel pipe appears at the troughs of the left and right sides of the pipe. And the maximum equivalent stress of the outer soil occurs in the middle of the upper left, upper right, lower left, lower right along 45˚ directions. Moreover, the thickness and the soil elastic modulus both have significant effects on the mechanical properties of steel pipe.

Keywords:Corrugated Steel Pipe, Finite Element Model, Mechanical Properties, Parameters Analysis

1. 引言

2. 模型建立

Figure 1. Boundary condition diagram

H——轨底至涵洞顶的填土高度(m)；

H1——轨底至涵洞计算截面处的填土高度(m)；

$\gamma$ ——填料容重(kN/m3)；

$\xi$ ——水平土压力系数，填土采用0.25或0.35，视设计的控制情况采用，经久压实的路堤采用0.25；

K——竖向土压力系数。

Figure 2. Boundary condition diagram

Figure 3. 3D finite element model

Table 1. Constitutive model material parameters

3. 力学特性分析

Figure 4. Equivalent stress distribution of corrugated pipe (side)

Figure 5. Equivalent stress distribution of soil

Figure 6. Maximum equivalent stress of pipe under different elastic modulus of soil

Figure 7. Maximum vertical deformation at the top of the pipe

Figure 8. Maximum vertical deformation at the bottom of the pipe

Figure 9. Maximum vertical deformation of the pipe with 6.5 mm thickness

4. 结论

1) 钢波纹管的最小等效应力出现在管体上方和下方的波谷处，而最大等效应力则出现在管体左侧和右侧的波谷处。

2) 管外围土体的最小等效应力出现在波纹管外侧的上方和下方的接触面，而最大等效应力则出现在波纹管外侧左上、右上、左下、右下45˚方向上的圆环中部。

3) 壁厚对钢波纹管的最大等效应力影响较大，但对其最大竖向变形的影响并不明显。壁厚越大，其最大等效应力越小，且随着土体弹模的增大该影响越明显。

4) 土体弹模的大小对钢波纹管的受力和变形均有较大的影响。土体弹模越小，钢波纹管的最大等效应力与最大竖向变形越大，且随着土体弹模的减小，该影响越明显。

Analysis on Mechanical Properties and Parameters of Large-Sized Corrugated Steel Pipe[J]. 土木工程, 2019, 08(05): 997-1003. https://doi.org/10.12677/HJCE.2019.85116

1. 1. 褚夫蛟, 曾水生, 方文富, 等. 高填方大直径钢波纹管涵洞力学特性[J]. 东北大学学报(自然科学版), 2016, 37(9): 1338-1342.

2. 2. Liu, B.D., Liu, Z.M., Zhang, M.X., et al. (2014) Study on Impact Parameters of Rigidity and Flexibility for Buried Corrugated Steel Culvert. Open Civil Engineering Journal, 8, 14-22. https://doi.org/10.2174/1874149501408010014

3. 3. 刘百来, 李祝龙, 汪双杰. 钢波纹管涵洞力学性能的有限元分析[J]. 西安工业学院学报, 2006(1): 83-86.

4. 4. 冯忠居, 乌延玲, 贾彦武, 等. 钢波纹管涵洞受力与变形特性模拟试验研究[J]. 岩土工程学报, 2013, 35(1): 187-192.

5. 5. 朱旭阳, 何欢, 高文学, 等. 大直径钢波纹管管顶土压力分析[J]. 中外公路, 2015, 35(4): 39-43.

6. 6. 粟缤, 何欢, 高文学, 等. 波纹管涵受力性能数值分析[J]. 中外公路, 2015, 35(4): 39-43.

7. NOTES

*第一作者。