﻿ 超临界CO2临界流数值模拟 Numerical Simulation of Supercritical CO2 Critical Flow

Nuclear Science and Technology
Vol.05 No.03(2017), Article ID:21514,8 pages
10.12677/NST.2017.53023

Numerical Simulation of Supercritical CO2 Critical Flow

Yuan Zhou1, Zhaoyang Xia1, Yangle Wang1, Junfeng Wang2

1Nuclear Engineering and Nuclear Technology, Sichuan University, Wangjiang Campus, Wangjiang Sichuan

2Nuclear power institute of China, Chengdu Sichuan

Received: Jul. 12th, 2017; accepted: Jul. 23rd, 2017; published: Jul. 26th, 2017

ABSTRACT

The power conversion system using supercritical carbon dioxide is the frontier of the current international energy and power field. It is very important to analyze the critical flow of supercritical carbon dioxide. Based on FLUENT15.0, the critical flow of CO2 under different aspect ratios and Stagnation parameters is numerically simulated. The numerical simulation results are compared with the experimental results of Wisconsin University, and the error range is between 15% and 25%, which validates the applicability of software simulation. The critical flow mechanism is discussed when the thermal parameters and phase changes of the pipeline are obtained when the critical flow occurs. The numerical simulation results provide support and reference for further experimental research and theoretical research.

Keywords:Supercritical CO2, Critical Flow, FLUENT, Mass Flow Rate, L/D Ratio

1四川大学望江校区，四川大学核工程与核技术，四川 望江

2中国核动力研究设计院，四川 成都

1. 引言

2. 数值方法

2.1. 几何结构

Figure 1. Sharp expansion and contraction pipe model

Figure 2. Two-dimensional axisymmetric model of pipeline

Table 1. Pipe geometry

Table 2. Stagnation parameters of upstream of different pipelines

2.2. 相关模型

(1)

(2)

(3)

2.3. 网格划分及敏感性分析

3. 结果及分析

3.1. 管道参数变化与实验对比

Table 3. Grid sensitivity test results value

Table 4. Simulate the size of the pipeline of Shanghai Jiao Tong University

Table 5. Pipe boundary conditions

Figure 3. Pressure and position diagram

3.2. 参数影响

Figure 4. The relationship between pressure and inlet temperature [3]

Table 6. Mass flow density calculation results

Figure 5. The change of mass flow density with aspect ratio

Figure 6. The change of mass flow density at different diameters of 48 at different temperatures

Table 7. Length to diameter ratio of 48 different temperature mass flow density results

4. 结论

Numerical Simulation of Supercritical CO2 Critical Flow[J]. 核科学与技术, 2017, 05(03): 177-184. http://dx.doi.org/10.12677/NST.2017.53023

1. 1. 黄彦平, 王俊峰. 超临界二氧化碳在核反应堆中的应用[J]. 核动力工程, 2012, 33(3): 21-27.

2. 2. Mignot, G., Anderson, M. and Corradini, M. (2009) Measurement of Supercritical CO2 Critical Flow: Effect of L/D and Surface Roughness. Nuclear Engineering and Design, 239, 949-955. https://doi.org/10.1016/j.nucengdes.2008.10.031

3. 3. Liu, J.P., Niu, Y.M., Chen, J.P. and Feng, X. (2004) Experimentation and Correlation of R744 Two-Phase Flow through Short Tubes. Expenrimental Thermal and Fluid Science, 28, 576-573. https://doi.org/10.1016/j.expthermflusci.2003.08.004

4. 4. 周俊波. FLUENT6.3流场分析从入门到精通[M]. 北京: 机械工业出版社, 2012: 1-315.

5. 5. 赵汝顺, 王开明. Redlich-Kwong实际气体转换温度的研究[J]. 西安交通大学学报, 2007, 41(4): 504-506.

6. 6. 徐进良, 陈听宽, 陈学俊, 宋纪元. 两相临界流[J]. 力学进展, 1995, 25(1): 77-84.

7. 7. 陈听宽, 徐进良, 罗毓珊. 两相临界流实验研究[J]. 工程热物理学报, 2002, 23(5): 622-626.

8. 8. 杭立群. 两相临界流[J]. 核动力工程, 1982, 3(2): 36-41.

9. 9. 苏光辉, 姜志军, 贾斗南. 直边入口直通道临界流的理论研究[J]. 原子能科学技术, 1996, 30(yz): 346-350.