Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 73638 , 9 pages
10.12677/ACM.2023.13102227

长链非编码RNA ST8SIA6-AS1在恶性肿瘤中 的研究进展

刘钱伟1,陈超1,张秩1,高磊1,高琴1,于照祥1,2*

1西安医学院研工部,陕西 西安

2西安医学院第一附属医院普通外科,陕西 西安

收稿日期:2023年9月13日;录用日期:2023年10月8日;发布日期:2023年10月13日

摘要

长链非编码RNA (long non-coding RNAs, LncRNA)是一种长度超过200个核苷酸的非编码RNA,尽管LncRNA占所有转录物的不到2%,但其在调节基因表达水平发挥重要作用,广泛参与人类疾病进展。很少有LncRNA被发现对癌细胞存活至关重要,尤其是对多种癌症类型至关重要的LncRNA。长链非编码RNA ST8SIA6-AS1被发现在多种肿瘤中处于失调状态,如垂体腺瘤、肝细胞癌、肺癌、乳腺癌及结直肠癌等。本综述结合近期文献,总结ST8SIA6-AS1参与肿瘤的发生发展作用与分子机制,为进一步研究提供参考。

关键词

长链非编码RNA,ST8SIA6‑AS1,肿瘤

Research Progress of LncRNA ST8SIA6-AS1 in Malignant Tumors

Qianwei Liu1, Chao Chen1, Zhi Zhang1, Lei Gao1, Qin Gao1, Zhaoxiang Yu1,2*

1Research and Engineering Department, Xi’an Medical University, Xi’an Shaanxi

2Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an Shaanxi

Received: Sep. 13th, 2023; accepted: Oct. 8th, 2023; published: Oct. 13th, 2023

ABSTRACT

Long non-coding RNAs are non-coding RNAs more than 200 nucleotides in length. Although LncRNAs account for less than 2% of all transcripts, they play an important role in regulating gene expression levels and are widely involved in the progression of human diseases. Few LncRNAs have been found to be critical for cancer cell survival, especially those critical for multiple cancer types. LncRNA ST8SIA6-AS1 has been found to be dysregulated in a variety of tumors, such as pituitary adenoma, hepatocellular carcinoma, lung cancer, breast cancer, and colorectal cancer. In this review, we summarize the role and molecular mechanisms of ST8SIA6-AS1 involved in tumor development, which provides a reference for further studies.

Keywords:LncRNA, ST8SIA6-AS1, Tumor

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

长链非编码RNA (LncRNA)是一种长度超过200个核苷酸的非编码RNA,没有蛋白编码能力。尽管LncRNA占所有转录物的不到2%,但不同表达的LncRNA在调节人类肿瘤的细胞过程中具有很大的能力。只有约12%的LncRNA可以在人类以外的生物体中发现。LncRNA参与大部分生物过程,如表观遗传调控、转录调控和转录后调控等 [1] 。大多数LncRNA在组织分化发育过程中具有明显的时空表达特异性 [1] 。最近的研究表明,LncRNA参与了许多重要的调控过程,如染色体沉默、基因组印记、转录激活(干扰)及核转运等 [2] 。LncRNA的作用机制极为复杂,目前尚未完全了解,目前得到充分验证的是LncRNA可以充当microRNA (miRNA)分子海绵并调节下游基因 [3] 。例如,Chen [4] 等证实,由HIF-1α激活的LncRNA ST8SIA6-AS1竞争性地吸收miR-411-5p以增加KPNA2的表达,从而促进肝癌的生长和转移。miRNA是非编码RNA的另一部分,长度为20~24个核苷酸 [5] 。LncRNA在癌细胞的病理活动中起着重要作用,如LncRNA通过作为竞争性内源性RNA (ceRNA)与miRNA相互作用,以调节肿瘤细胞的增殖、凋亡、迁移和侵袭 [6] 。LncRNA ST8SIA6-AS1被发现在多种疾病中起重要作用,本综述总结近些年ST8SIA6-AS1相关研究,试图揭示其在疾病中机制,为进一步研究提供参考。

本文检索策略

计算机检索PunMed、Web of Science、中国知网(CNKI)等数据库,检索时间设定为建库至2023年1月,中文检索词包括“长链非编码RNA”“ST8SIA6-AS1”“肿瘤”“分子机制”,英文检索词包括“long non-coding RNAs”“LncRNA”“ST8SIA6-AS1”“tumor”“Molecular Mechanisms”。纳入标准:文献内容涉及LncRNA ST8SIA6-AS1对肿瘤中的作用和机制。排除标准:与本文主题无关联、无法获得全文、质量差的文献。最终纳入文献55篇。

2. LncRNA ST8SIA6-AS1的结构和功能

核质分离实验明表明ST8SIA6-AS1主要定位于细胞质中 [7] 。目前已知LncRNA的作用方式有顺式作用和反式作用两种 [8] 。顺式作用的LncRNA如LncRNA-p21,其通过顺式作用作为p53介导的p21表达的位点限制性辅助因子而影响p53肿瘤抑制途径 [9] 。基因芯片数据中筛选了ST8SIA6-AS1附近的基因表达,但没有基因表现出明显的表达变化,表明顺式作用模式的可能性较低,对于反式作用模式,LncRNA可以在与其伴侣蛋白结合后起作用,但利用生物素标记的ST8SIA6-AS1 RNA进行的初步pull-down实验未能发现ST8SIA6-AS1与特定蛋白的相互作用 [10] ,需要进一步的系统研究来揭示ST8SIA6-AS1是单独作用还是与其他RNA结合蛋白共同作用。ST8SIA6-AS1的敲除导致癌细胞中的有丝分裂突变和大量凋亡,其过度表达加速了癌细胞周期进程,促进了增殖并抑制了化疗诱导的凋亡 [11] 。

3. LncRNA ST8SIA6-AS1调控恶性肿瘤发生发展机制

研究表明 [12] ,LncRNA ST8SIA6-AS1作为多种人类癌症的致癌基因,在与患者不良临床结果相关的多种人类癌症中过度表达。敲低ST8SIA6-AS1导致人乳腺癌、肺癌和胰腺癌细胞的有丝分裂受阻和大量细胞凋亡,过表达ST8SIA6-AS1可加速癌细胞周期进程、促进增殖并抑制化疗诱导的细胞凋亡。调节有丝分裂多个阶段的Polo样激酶1 (Polo-like kinasel, PLK1)的激活是其在恶性细胞中发挥其致癌功能的基础,PLK1激活受到ST8SIA6-AS1的调节。在肝细胞癌中,ST8SIA6-AS1通过靶向miR-4656增加HDAC11的表达,从而增强肝细胞癌细胞增殖和抗凋亡 [13] 。ST8SIA6-AS1充当miR-5195的海绵并升高PCBP2,促进结直肠癌细胞增殖、迁移和侵袭 [14] 。Luo [15] 等发现,ST8SIA6-AS1通过连接PLK1和Aurora A以增加PLK1磷酸化来促进乳腺肿瘤的发生。p53是公认的肿瘤抑制因子,在人类癌症中经常失活或低表达,它能够直接与基因启动子结合以促进或抑制基因表达 [16] 。通过数据库(PROMO、JASPAR和TRANSFAC)分析、ChIP实验和荧光素酶报告基因实验,发现p53可以与ST8SIA6-AS1转录起始结合位点结合,抑制ST8SIA6-AS1的表达 [17] ,表明p53在转录上使ST8SIA6-AS1失活。ST8SIA6-AS1提高CCA细胞增殖和迁移能力,并通过miR-145-5p/MAL2轴抑制CCA细胞的凋亡,促进CCA细胞恶性行为和肿瘤进展 [7] 。ST8SIA6-AS1通过靶向调控miR-2233p促进骨肉瘤进展,抑制miR-223-3p可逆转沉默ST8SIA6-AS1对骨肉瘤细胞增殖及迁移的抑制作用 [18] 。LncRNA的异常表达通过转录或转录后基因调控影响癌细胞的增殖、转移、自我更新和凋亡,从而促进多种癌症类型的发展和进展 [19] [20] 。在识别恶性肿瘤中突变的基因并靶向治疗取得的进展突显了精准医学在治疗恶性疾病方面的新兴作用。癌基因和肿瘤抑制基因可以通过基因重排、缺失、插入或替换等突变激活或失活。除遗传原因外,还发现了肿瘤相关基因的表观遗传调控,包括CpG位点的甲基化、microRNA或长链非编码RNA (LncRNA)的调控以及组蛋白修饰 [21] 。

4. LncRNA ST8SIA6-AS1在不同恶性肿瘤中的研究进展

4.1. LncRNA ST8SIA6-AS1与垂体腺瘤

垂体腺瘤是一种常见的颅内肿瘤,因其细胞增殖和内分泌特点而具有不同的生物学行为 [22] 。垂体腺瘤较少发生恶性病变,但垂体腺瘤可以浸润鞍区周围组织,破坏正常结构,浸润血管壁,侵犯海绵窦及周围脑组织 [23] 。细胞周期调节紊乱、癌基因异常表达和抑癌基因缺失与垂体腺瘤的发生有关 [24] 。然而其发病机制仍不清楚。有研究显示 [25] ,ST8SIA6-AS1在人垂体腺瘤的细胞系中的表达被沉默,降低了垂体腺瘤细胞的增殖、侵袭和迁移,并上调miR-5195-3p的表达水平影响HOXA9表达,从而影响垂体腺瘤上皮间质化改变。另有研究显示,使用了RNA-seq分析和系统的生物信息学方法,发现ST8SIA6AS1在侵袭性垂体腺瘤表达上调,这些潜在的分子特征可能在侵袭性垂体腺瘤的发病机制中发挥关键作用。这些发现表明ST8SIA6-AS1是可能是垂体腺瘤的潜在治疗靶点。

4.2. LncRNA ST8SIA6-AS1与肝细胞癌

肝细胞癌(HCC)是最常见的原发性肝癌类型,约占病例的90%,也是全球导致癌症相关死亡的第三大原因 [26] 。亚洲是HCC高发地区,且乙型肝炎病毒感染是中国患者最主要的危险因素,约占病例的50%,其他危险因素包括丙型肝炎病毒感染、糖尿病、吸烟、大量饮酒及黄曲霉毒素B1摄入等 [27] 。预计到2025年,每年将超过100万人受肝癌影响 [28] 。尽管近些年来HCC的治疗取得了很大进展,包括分子靶向治疗、经导管动脉化疗栓塞、消融治疗、手术切除和肝移植等,但HCC患者的预后仍不尽如人意,5年复发率高达80%,其原因主要是肿瘤发生转移和复发 [26] 。许多LncRNA被发现和证明参与包括HCC在内的各种肿瘤进展 [4] [29] 。HCC发生和转移的确切机制在很大程度上仍不清楚。因此,阐明肿瘤发生和转移的分子机制,对开发新的HCC治疗方法显得非常重要。有研究 [30] 发现,ST8SIA6-AS1在HCC组织和细胞中高表达,高ST8SIA6-AS1水平与较多的肿瘤数量和较高的病理分级相关,且高表达ST8SIA6-AS1的患者总生存期较短。体内实验发现ST8SIA6-AS1增强HCC细胞增殖、迁移和侵袭,并抑制凋亡,体内实验发现ST8SIA6-AS1促进肿瘤发生发展。亚细胞分离实验发现ST8SIA6-AS1主要位于细胞质中,表明ST8SIA6-AS1在转录后调控中发挥作用,ST8SIA6-AS1通过靶向miR-338-3p来调节HCC细胞中NONO的表达,从而促进HCC细胞增殖、迁移和侵袭的能力。Li [31] 等研究表明,ST8SIA6-AS1可与miR-5195-3p结合并负调控其在HCC中的表达,随后证实HOXB6是miR-5195-3p的靶基因,并在HCC中受到ST8SIA6-AS1的正向调节,抑制miR-5195-3p或上调HOXB6抵消了敲低ST8SIA6-AS1对HCC进展的抑制作用,ST8SIA6-AS1通过吸收miR-5195-3p上调HOXB6促进HCC。另外 [32] ,ST8SIA6-AS1作为竞争性内源性RNA (ceRNA)与miR-129-5p结合并调节黑色素瘤相关抗原A3 (melanomaassociated antigen-A3, MAGEA3)和DCAF4L2的表达在HCC中发挥促癌作用。ST8SIA6-AS1还可通过ST8SIA6-AS1/miR-4656/HDAC11轴促进细胞增殖和对细胞凋亡的抵抗 [33] 。可以确定ST8SIA6-AS1在HCC中是一种致癌LncRNA,可预测HCC患者的不良临床结果,这些发现表明ST8SIA6-AS1是HCC的潜在治疗靶点。

4.3. LncRNA ST8SIA6-AS1与肺癌

肺癌主要分为小细胞肺癌和非小细胞肺癌,其危险因素主要包括吸烟、环境污染及暴露于有毒物质等 [34] 。肺腺癌(lung adenocarcinoma, LUAD)是最常见的肺癌亚型,起源于支气管黏膜腺上皮,占所有肺癌患者50%左右,女性人数比男性更多 [35] 。在中国,肺癌发病率和死亡率呈上升趋势,每年LUAD患者超过100万,死亡人数超过20万。LUAD患者肿瘤一旦完全浸润,其快速发展和早期转移导致预后不良,5年平均生存率仅为15% [36] [37] [38] 。目前主要治疗方法包括手术、放疗、化疗、靶向治疗和免疫治疗等 [39] 。尽管LUAD在诊断和治疗方面取得进展,但存活率并没有显着提高 [40] 。LUAD发病机制仍不明确,缺乏可靠的生物标志物,因此,通过探索参与LUAD进展的潜在分子机制为治疗提供可能性。实验表明 [17] ,ST8SIA6-AS1在LUAD中作为致癌LncRNA发挥作用。ST8SIA6-AS1在LUAD组织和细胞系中高表达,高ST8SIA6-AS1水平与较大的肿瘤大小、淋巴结转移和晚期TNM分期呈正相关,且高表达ST8SIA6-AS1患者生存时间更短(p = 0.018)。LUAD患者血浆中ST8SIA6-AS1水平升高,AUC值为0.8681。CCK-8实验、集落形成实验和transwell实验表明ST8SIA6-AS1促进LUAD细胞增殖、迁移和侵袭,小鼠异种移植瘤模型提示敲低ST8SIA6-AS1组的肿瘤体积明显降低。ST8SIA6-AS1通过ST8SIA6-AS1/miR-125a-3p/NNMT轴促进LUAD恶性进展。以上研究提示ST8SIA6-AS1可作为LUAD诊断和预后生物标志物,并可能是一个潜在治疗靶点。

4.4. LncRNA ST8SIA6-AS1与乳腺癌

乳腺癌(Breast cancer, BC)是导致女性癌症死亡的主要原因,发病率随年龄增长而增加,超过80%的BC在50岁以上的女性中诊断出来,据世界卫生组织公布,2020年全球有68.5万人死于BC [41] 。大多数BC是腺癌,其中85%的腺癌病例来自乳腺导管,15%来自小叶上皮。肿瘤复发和转移是影响BC患者生存率的主要阻碍。乳腺癌细胞上雌激素受体、孕激素受体和人表皮生长因子2受体的存在与否对于确定治疗选择非常重要 [42] 。治疗通常包括手术、放疗、化疗、靶向治疗(如曲妥珠单抗和帕妥珠单抗)和内分泌治疗等 [43] 。LncRNA在BC中异常表达,并可调控肿瘤细胞增殖及迁移等功能 [44] 。BC在肿瘤之间和肿瘤内部具有高度的异质性,因此迫切需要识别和更好地了解与BC患者肿瘤发生和发展过程相关的基因的变化和生物学功能。在BC研究中,许多LncRNA已被证实在刺激或抑制癌细胞中发挥关键作用,可单独或与蛋白质结合发挥作用 [45] 。Fang [46] 等证实,在BC患者中,ST8SIA6-AS1的高表达与雌激素受体阴性、孕激素受体阴性、晚期TMN分期和较差的生存率相关。体外功能实验表明,ST8SIA6-AS1的高表达促进了BC细胞系的增殖、侵袭和迁移。体内实验表明,ST8SIA6-AS1的上调促进了BC的异种移植瘤生长。在机制上,ST8SIA6-AS1通过分别影响AKT1和有丝分裂原蛋白激酶(MAPK)基因的mRNA和蛋白水平来调节它们的表达,并且它还影响了AKT1蛋白的磷酸化。回复实验表明,ST8SIA6-AS1以MAPK信号介导的方式促进BC细胞增殖、侵袭和迁移。Jeong [11] 等研究表明ST8SIA6-AS1表达与KLHDC7B显着相关,ST8SIA6-AS1基因表达的异常促进BC发生发展。ST8SIA6-AS1在BC的发生和发展中起着重要作用。ST8SIA-AS1还可通过miR-4252或与RNA结合蛋白NONO、QKI和RBMX相互作用而促进乳腺癌的进展 [44] 。ST8SIA6-AS1通过靶向miR-145-5p/CDCA3来失活p53/p21信号,从而促进细胞增殖、细胞周期进展、迁移和侵袭,从而发挥肿瘤促进剂的作用。我们的研究表明,靶向ST8SIA6-AS1/miR-145-5p/CDCA3轴可能是TNBC患者的潜在治疗策略。然而,有必要对ST8SIA6-AS1进行进一步的临床研究 [47] 。因此,ST8SIA6-AS1可作为乳腺癌诊断的分子标志物,通过鉴定参与其信号通路的管型,有助于全面了解其在乳腺癌发生发展过程中的分子活动,可能成为一个有前景的治疗靶点。

4.5. LncRNA ST8SIA6-AS1与胆管癌

胆管癌(Cholangiocarcinoma, CCA)是一种上皮细胞恶性肿瘤,大多数CCA是腺癌,可发生在胆管或肝实质内,根据解剖起源分为三种亚型:肝内CCA (iCCA)、肺门周围CCA (pCCA)或远端CCA (dCCA) [48] 。近几年CCA病例呈上升趋势,尤其是在东亚地区 [49] ,危险因素包括肝吸虫病、硬化性胆管炎、肝硬化及胆总管囊肿等。尽管存在多种CCA风险因素,但大多数CCA没有可识别的风险因素 [50] 。CCA通常在早期阶段无症状,通常被诊断时已是晚期阶段,极大影响治疗选择 [51] 。使用先进的治疗方法,如将新辅助治疗与手术和局部治疗相结合来治疗CCA患者,但其复发率和死亡率仍然很高,5年生存率为7%~20% [52] 。因此,需要了解CCA的潜在分子机制以改善CAA患者的预后和治疗。He [7] 等证实,与相邻正常组织和正常人肝内胆管上皮细胞相比,ST8SIA6-AS1在CCA组织和CCA细胞系中显著上调,且高表达ST8SIA6-AS1水平患者较低表达总生存率显著降低。核质分离实验明表明ST8SIA6-AS1主要在细胞质中表达。通过CCK-8实验、transwell实验、流式细胞术检测、双荧光素酶报告基因检测及Western blot实验证明ST8SIA6-AS1提高CCA细胞增殖和迁移能力,并通过miR-145-5p/MAL2轴抑制CCA细胞的凋亡,促进CCA细胞恶性行为和肿瘤进展。因此,ST8SIA6-AS1可以被认为是一种新的CCA治疗途径。但如何使患者长期收益仍是一个巨大挑战,需进一步了解预后生物标志物,如从胆汁和血液中获取相关分子指标建立CAA预测模型为治疗提供选择。

4.6. LncRNA ST8SIA6-AS1与结直肠癌

结直肠癌(Colorectal cancer, CRC)是仅次于肺癌和乳腺癌的世界上癌症相关死亡率的第三大常见原因,占全球每年确诊的所有癌症和癌症相关死亡人数的10%左右,每年导致超过一百万人死亡,预计到2035年,全球CRC发病率将增加到250万 [53] 。CRC的发生和发展是由多种因素引起的,比如遗传因素、吸烟、饮酒、蔬菜和水果摄入量低及肥胖等 [54] 。尽管CRC临床诊断和治疗取得很大进展,如癌症生物标志物、手术切除、放疗、化疗和联合治疗等,但CRC患者预后较差,5年生存率较低 [55] 。复发、转移和耐药是结直肠癌患者预后不良的主要原因。侵袭性结直肠肿瘤具有复杂的生物学特征,涉及一系列病理生理变化以及基因和信号通路的异常调节等。因此,发现CRC的有效诊断生物标志物和治疗靶点至关重要。有研究 [14] 表明,通过RT-qPCR检测,与邻近正常组织相比,ST8SIA6-AS1在CRC组织中表达上调,ST8SIA6-AS1在CRC细胞中的表达水平也高于正常结肠粘膜上皮细胞系,提示ST8SIA6-AS1在CRC组织和细胞中上调。MTT实验和transwell实验显示敲低ST8SIA6-AS1抑制了CRC细胞的增殖、迁移和侵袭。StarBase数据库和荧光素酶报告分析表明miR-5195是ST8SIA6-AS1下游靶点,且在CRC细胞中ST8SIA6-AS1是miR-5195的分子海绵。ST8SIA6-AS1通过海绵miR-5195上调PCBP2表达并促进CRC的发生和恶性进展。上述研究表明ST8SIA6-AS1可能是CRC患者的潜在治疗靶点。

4.7. LncRNA ST8SIA6-AS1与骨肉瘤

骨肿瘤常见亚型包括骨肉瘤、尤文肉瘤、软骨肉瘤和脊索瘤等,骨肉瘤(Osteosarcoma, OS)是一组起源于间充质组织的恶性骨肿瘤,约占骨肿瘤的56% [38] 。美国每年约有3000例患者被确诊为骨肉瘤,占所有新发癌症的0.2% [56] 。OS好发于儿童和青少年人群,青春期是OS第一个发病高峰,第二个发病高峰在65岁以上老年人,通常表现为继发性骨肿瘤 [57] 。OS最常见于生长板附近的长骨干骺端,三分之二的肿瘤出现在股骨远端的膝关节周围,其次是胫骨近端,肱骨近端是第三常见部位,占肿瘤的10% [58] 。尽管骨肉瘤发生率相对较低,但具有高死亡率和总体疾病负担,74%的患者会出现肺转移且容易复发,预后不良 [59] 。目前OS的标准治疗包括广泛的手术切除、放疗、新辅助化疗和辅助化疗等 [56] 。尽管采取积极的治疗措施,但患者预后没有显着改善,迫切需要建立新的治疗策略改善整体生存率。宋 [18] 等研究表明,ST8SIA6-AS1在骨肉瘤组织中表达水平高于瘤旁组织,细胞划痕实验、transwell实验、MTT实验及集落形成实验表明敲低ST8SIA6-AS1后细胞划痕愈合率降低,克隆形成数和迁移数明显减少,骨肉瘤细胞增殖和迁移被明显抑制。miR-223-3p是ST8SIA6-AS1下游靶点,且ST8SIA6-AS1和miR-223-3p呈负相关,miR-223-3p能抑制骨肉瘤细胞增殖和迁移,ST8SIA6-AS1通过靶向调控miR-2233p促进骨肉瘤进展,抑制miR-223-3p可逆转沉默ST8SIA6-AS1对骨肉瘤细胞增殖及迁移的抑制作用。以上研究表提示ST8SIA6-AS1可能是骨肉瘤潜在的治疗靶点。

5. 讨论与展望

LncRNA在基因表达水平调节中发挥重要作用,其参与大部分生物过程,如表观遗传调控、转录调控和转录后调控等。LncRNA ST8SIA6-AS1是ST8SIA6的反义转录物,且ST8SIA6-AS1被发现在多种肿瘤中处于失调状态,如垂体腺瘤、肝细胞癌、肺癌、乳腺癌及结直肠癌等。应探索ST8SIA6-AS1在不同肿瘤中发生发展机制,且其与其他因素通过何种途径或联系互相影响并作用来发挥协同或(抑制)效应,促进其对疾病的理解。还应进一步探索通过对ST8SIA6-AS1的干预,开发出新的诊断和治疗方式,为未来相关疾病治疗提供更多机会。

文章引用

刘钱伟,陈 超,张 秩,高 磊,高 琴,于照祥. 长链非编码RNA ST8SIA6-AS1在恶性肿瘤中的研究进展
Research Progress of LncRNA ST8SIA6-AS1 in Malignant Tumors[J]. 临床医学进展, 2023, 13(10): 15932-15940. https://doi.org/10.12677/ACM.2023.13102227

参考文献

  1. 1. Quinn, J.J. and Chang, H.Y. (2016) Unique Features of Long Non-Coding RNA Biogenesis and Function. Nature Re-views Genetics, 17, 47-62. https://doi.org/10.1038/nrg.2015.10

  2. 2. Qin, T., Li, J. and Zhang, K.Q. (2020) Struc-ture, Regulation, and Function of Linear and Circular Long Non-Coding RNAs. Frontiers in Genetics, 11, Article No. 150. https://doi.org/10.3389/fgene.2020.00150

  3. 3. Dutta, A., Roy, A. and Chatterjee, S. (2021) Long Noncoding RNAs in Cancer Immunity: A New Avenue in Drug Discovery. Drug Discovery Today, 26, 264-272. https://doi.org/10.1016/j.drudis.2020.07.026

  4. 4. Chen, T., Liu, R., Niu, Y., et al. (2021) HIF-1alpha-Activated Long Non-Coding RNA KDM4A-AS1 Promotes Hepatocellular Carcinoma Progression via the miR-411-5p/KPNA2/AKT Pathway. Cell Death & Disease, 12, Article No. 1152. https://doi.org/10.1038/s41419-021-04449-2

  5. 5. Paraskevopoulou, M.D. and Hatzigeorgiou, A.G. (2016) Ana-lyzing MiRNA-LncRNA Interactions. Methods in Molecular Biology, 1402, 271-286. https://doi.org/10.1007/978-1-4939-3378-5_21

  6. 6. Abildgaard, C., Do, C.L., Steffensen, K.D., et al. (2019) Long Non-Coding RNAs Involved in Resistance to Chemotherapy in Ovarian Cancer. Frontiers in Oncology, 9, Article No. 1549. https://doi.org/10.3389/fonc.2019.01549

  7. 7. He, J., Yan, H., Wei, S., et al. (2021) LncRNA ST8SIA6-AS1 Promotes Cholangiocarcinoma Progression by Suppressing the miR-145-5p/MAL2 Axis. OncoTargets and Therapy, 14, 3209-3223. https://doi.org/10.2147/OTT.S299634

  8. 8. Liu, Y., Sharma, S. and Watabe, K. (2015) Roles of LncRNA in Breast Cancer. Frontiers in Bioscience (Scholar Edition), 7, 94-108. https://doi.org/10.2741/s427

  9. 9. Dimitrova, N., Zamudio, J.R., Jong, R.M., et al. (2014) LincRNA-p21 Activates p21 in Cis to Promote Polycomb Target Gene Expres-sion and to Enforce the G1/S Checkpoint. Molecular Cell, 54, 777-790. https://doi.org/10.1016/j.molcel.2014.04.025

  10. 10. Jeong, G., Bae, H., Jeong, D., et al. (2018) A Kelch Do-main-Containing KLHDC7B and a Long Non-Coding RNA ST8SIA6-AS1 Act Oppositely on Breast Cancer Cell Pro-liferation via the Interferon Signaling Pathway. Scientific Reports, 8, Article No. 12922. https://doi.org/10.1038/s41598-018-31306-8

  11. 11. Luo, M.L., Li, J., Shen, L., et al. (2020) The Role of APAL/ST8SIA6-AS1 LncRNA in PLK1 Activation and Mitotic Catastrophe of Tumor Cells. JNCI: Journal of the Na-tional Cancer Institute, 112, 356-368. https://doi.org/10.1093/jnci/djz134

  12. 12. Chen, X., Yuan, Q., Liu, J., Xia, S., Shi, X., Su, Y., Wang, Z., Li, S. and Shang, D. (2022) Comprehensive Characterization of Extracellular Matrix-Related Genes in PAAD Identified a Novel Prognostic Panel Related to Clinical Outcomes and Immune Microenvironment: A Silico Analysis with in Vivo and Vitro Validation. Frontiers in Immunology, 13, Article ID: 985911. https://doi.org/10.3389/fimmu.2022.985911

  13. 13. Feng, T., Yao, Y., Luo, L., Zou, H., Xiang, G., Wei, L., Yang, Q., Shi, Y., Huang, X. and Lai, C. (2023) ST8SIA6-AS1 Contributes to Hepatocellular Carcinoma Progression by Tar-geting miR-142-3p/HMGA1 Axis. Scientific Reports, 13, Article No. 650. https://doi.org/10.1038/s41598-022-26643-8

  14. 14. Huang, C.M., Cao, G.Y., Yang, C.X., et al. (2020) LncRNA ST8SIA6-AS1 Promotes Colorectal Cancer Cell Proliferation, Migration and Invasion by Regulating the miR-5195/PCBP2 Axis. European Review for Medical and Pharmacological Sciences, 24, 4203-4211.

  15. 15. Zhang, Y., Yang, Y., Zhang, Y. and Liu, Z. (2021) LncRNA ST8SIA6-AS1 Facilitates Proliferation and Invasion in Liver Cancer by Re-Gulating miR-142-3p. Experimental and Therapeutic Medicine, 22, Article No. 1348. https://doi.org/10.3892/etm.2021.10783

  16. 16. Vousden, K.H. and Prives, C. (2009) Blinded by the Light: The Growing Complexity of p53. Cell, 137, 413-431. https://doi.org/10.1016/j.cell.2009.04.037

  17. 17. Cao, Q., Yang, W., Ji, X., et al. (2020) Long Non-Coding RNA ST8SIA6-AS1 Promotes Lung Adenocarcinoma Progression through Sponging miR-125a-3p. Frontiers in Genetics, 11, Article ID: 597795. https://doi.org/10.3389/fgene.2020.597795

  18. 18. 宋国全, 姜鹏, 李子华, 等. ST8SIA6-AS1对骨肉瘤细胞增殖和转移的影响及其分子机制[J]. 实用临床医药杂志, 2022, 26(8): 99-103.

  19. 19. Jin, Y., Feng, S.J., Qiu, S., et al. (2017) LncRNA MALAT1 Promotes Proliferation and Metastasis in Epithelial Ovarian Cancer via the PI3K-AKT Path-way. European Review for Medical and Pharmacological Sciences, 21, 3176-3184.

  20. 20. Xia, H., Liu, Y., Wang, Z., et al. (2020) Long Noncoding RNA HOTAIRM1 Maintains Tumorigenicity of Glioblastoma Stem-Like Cells through Regulation of HOX Gene Expression. Neurotherapeutics, 17, 754-764. https://doi.org/10.1007/s13311-019-00799-0

  21. 21. Basse, C. and Arock, M. (2015) The Increasing Roles of Epige-netics in Breast Cancer: Implications for Pathogenicity, Biomarkers, Prevention and Treatment. International Journal of Cancer, 137, 2785-2794. https://doi.org/10.1002/ijc.29347

  22. 22. Johnson, M.D., Woodburn, C.J. and Vance, M.L. (2003) Quality of Life in Patients with a Pituitary Adenoma. Pituitary, 6, 81-87. https://doi.org/10.1023/B:PITU.0000004798.27230.ed

  23. 23. Ezzat, S., Asa, S.L., Couldwell, W.T., et al. (2004) The Prevalence of Pituitary Adenomas: A Systematic Review. Cancer, 101, 613-619. https://doi.org/10.1002/cncr.20412

  24. 24. Vierimaa, O., Georgitsi, M., Lehtonen, R., et al. (2006) Pituitary Adenoma Predisposition Caused by Germline Mutations in the AIP Gene. Science, 312, 1228-1230. https://doi.org/10.1126/science.1126100

  25. 25. Li, Z., Zhang, C., Zong, X., et al. (2022) ST8SIA6-AS1 Promotes the Epithelial-to-Mesenchymal Transition and Angiogenesis of Pituitary Adenoma. Journal of Oncology, 2022, Article ID: 7960261.

  26. 26. (2021) Hepatocellular Carcinoma. Nature Reviews Disease Primers, 7, Article No. 7. https://doi.org/10.1038/s41572-021-00245-6

  27. 27. Akinyemiju, T., Abera, S., Ahmed, M., et al. (2017) The Burden of Primary Liver Cancer and Underlying Etiologies from 1990 to 2015 at the Global, Regional, and National Level: Re-sults from the Global Burden of Disease Study 2015. JAMA Oncology, 3, 1683-1691. https://doi.org/10.1001/jamaoncol.2017.3055

  28. 28. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Can-cer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492

  29. 29. Wang, L., Sun, L., Liu, R., et al. (2021) Long Non-Coding RNA MAPKAPK5-AS1/PLAGL2/HIF-1alpha Signaling Loop Promotes Hepatocellular Carcinoma Progression. Journal of Experimental & Clinical Cancer Research, 40, Article No. 72. https://doi.org/10.1186/s13046-021-01868-z

  30. 30. Kuai, J., Zheng, L., Yi, X., et al. (2021) ST8SIA6-AS1 Pro-motes the Development of Hepatocellular Carcinoma Cells through miR-338-3p/NONO Axis. Digestive and Liver Dis-ease, 53, 1192-1200. https://doi.org/10.1016/j.dld.2021.02.012

  31. 31. Li, Y. and Jiang, A. (2020) ST8SIA6-AS1 Promotes Hepatocellular Carcinoma by Absorbing miR-5195-3p to Regulate HOXB6. Cancer Biology & Therapy, 21, 647-655. https://doi.org/10.1080/15384047.2020.1743150

  32. 32. Lorenzi, L., Aviln Cobos, F., Decock, A., et al. (2019) Long Noncoding RNA Expression Profiling in Cancer: Challenges and Opportunities. Genes Chromosomes Cancer, 58, 191-199. https://doi.org/10.1002/gcc.22709

  33. 33. Fei, Q., Song, F., Jiang, X., et al. (2020) LncRNA ST8SIA6-AS1 Promotes Hepatocellular Carcinoma Cell Proliferation and Resistance to Apoptosis by Targeting miR-4656/HDAC11 Axis. Cancer Cell International, 20, Article No. 232. https://doi.org/10.1186/s12935-020-01325-5

  34. 34. Guo, X., Zhang, Y., Zheng, L., et al. (2018) Global Characterization of T Cells in Non-Small-Cell Lung Cancer by Single-Cell Sequencing. Nature Medicine, 24, 978-985. https://doi.org/10.1038/s41591-018-0045-3

  35. 35. Barta, J.A., Powell, C.A. and Wisnivesky, J.P. (2019) Global Epidemiology of Lung Cancer. Annals of Global Health, 85, Article No. 8. https://doi.org/10.5334/aogh.2419

  36. 36. Nanavaty, P., Alvarez, M.S. and Alberts, W.M. (2014) Lung Cancer Screening: Advantages, Controversies, and Applications. Cancer Control, 21, 9-14. https://doi.org/10.1177/107327481402100102

  37. 37. Li, H., Zhao, M., Fei, G., et al. (2022) Epidemiological Trends and Incidence Prediction of Lung Cancer in China Based on the Global Burden of Disease Study 2019. Frontiers in Medicine (Lausanne), 9, Article ID: 969487. https://doi.org/10.3389/fmed.2022.969487

  38. 38. Siegel, R.L., Miller, K.D. and Jemal, A. (2018) Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7-30. https://doi.org/10.3322/caac.21442

  39. 39. Zhang, H., Guo, L. and Chen, J. (2020) Rationale for Lung Adenocarci-noma Prevention and Drug Development Based on Molecular Biology During Carcinogenesis. OncoTargets and Thera-py, 13, 3085-3091. https://doi.org/10.2147/OTT.S248436

  40. 40. Dillman, R.O., Wiemann, M.C., Tai, D.F., Depriest, C.B., Soori, G., Stark, J.J., Mahdavi, K. and Church, C.K. (2006) Phase II Trial of Subcu-Taneous Interferon Followed by Intravenous Hybrid Bolus/Continuous Infusion Interleukin-2 in the Treatment of Renal Cell Carcinoma: Final Results of Cancer Bio-therapy Research Group 95-09. Cancer Biotherapy and Radiopharmaceuticals, 21, 130-137. https://doi.org/10.1089/cbr.2006.21.130

  41. 41. Giaquinto, A.N., Sung, H., Miller, K.D., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541. https://doi.org/10.3322/caac.21754

  42. 42. Feng, Y., Spezia, M., Huang, S., et al. (2018) Breast Cancer Development and Progression: Risk Factors, Cancer Stem Cells, Signaling Pathways, Genomics, and Molecular Pathogenesis. Genes & Diseases, 5, 77-106. https://doi.org/10.1016/j.gendis.2018.05.001

  43. 43. Elia, R., Maruccia, M., De Pascale, A., et al. (2021) The Man-agement of Breast Implant-Associated Anaplastic Large Cell Lymphoma in the Setting of Pregnancy: Seeking for Clinical Practice Guidelines. Archives of Plastic Surgery, 48, 373-377. https://doi.org/10.5999/aps.2021.00185

  44. 44. Li, Z., Hou, P., Fan, D., et al. (2017) The Degradation of EZH2 Mediated by LncRNA ANCR Attenuated the Invasion and Metastasis of Breast Cancer. Cell Death & Differentiation, 24, 59-71. https://doi.org/10.1038/cdd.2016.95

  45. 45. Kopp, F. and Mendell, J.T. (2018) Functional Classification and Experi-mental Dissection of Long Noncoding RNAs. Cell, 172, 393-407. https://doi.org/10.1016/j.cell.2018.01.011

  46. 46. Fang, K., Hu, C., Zhang, X., et al. (2020) LncRNA ST8SIA6-AS1 Promotes Proliferation, Migration and Invasion in Breast Cancer through the p38 MAPK Signalling Pathway. Carcino-genesis, 41, 1273-1281. https://doi.org/10.1093/carcin/bgz197

  47. 47. Qiao, Y., Wang, B., Yan, Y., et al. (2022) Long Noncoding RNA ST8SIA6-AS1 Promotes Cell Proliferation and Metastasis in Triple-Negative Breast Cancer by Targeting miR-145-5p/CDCA3 to Inactivate the p53/p21 Signaling Pathway. Environmental Toxicology, 37, 2398-2411. https://doi.org/10.1002/tox.23605

  48. 48. Cardinale, V. (2019) Classifications and Misclassification in Cholangiocar-cinoma. Liver International, 39, 260-262. https://doi.org/10.1111/liv.13998

  49. 49. Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 7-34. https://doi.org/10.3322/caac.21551

  50. 50. Khan, S.A., Tavolari, S. and Brandi, G. (2019) Cholangiocarcinoma: Epi-demiology and Risk Factors. Liver International, 39, 19-31. https://doi.org/10.1111/liv.14095

  51. 51. Banales, J.M., Cardinale, V., Carpino, G., et al. (2016) Expert Consensus Document: Cholangiocarcinoma: Current Knowledge and Future Perspectives Consensus Statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology & Hepatology, 13, 261-280. https://doi.org/10.1038/nrgastro.2016.51

  52. 52. Brindley, P.J., Bachini, M., Ilyas, S.I., et al. (2021) Cholangiocarci-noma. Nature Reviews Disease Primers, 7, Article No. 65. https://doi.org/10.1038/s41572-021-00300-2

  53. 53. Siegel, R., Miller, K.D., Goding, S.A., et al. (2020) Colorectal Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 145-164. https://doi.org/10.3322/caac.21601

  54. 54. Dekker, E., Tanis, P.J., Vleugels, J., et al. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480. https://doi.org/10.1016/S0140-6736(19)32319-0

  55. 55. Primrose, J., Falk, S., Finch-Jones, M., et al. (2014) Sys-temic Chemotherapy with or without Cetuximab in Patients with Resectable Colorectal Liver Metastasis: The New EPOC Randomised Controlled Trial. The Lancet Oncology, 15, 601-611. https://doi.org/10.1016/S1470-2045(14)70105-6

  56. 56. Thanindratarn, P., Dean, D.C., Nelson, S.D., et al. (2019) Advances in Immune Checkpoint Inhibitors for Bone Sarcoma Therapy. Journal of Bone Oncology, 15, Article ID: 100221. https://doi.org/10.1016/j.jbo.2019.100221

  57. 57. Mirabello, L., Troisi, R.J. and Savage, S.A. (2009) Osteo-sarcoma Incidence and Survival Rates from 1973 to 2004: Data from the Surveillance, Epidemiology, and End Results Program. Cancer, 115, 1531-1543. https://doi.org/10.1002/cncr.24121

  58. 58. Ferrari, S., Mercuri, M. and Bacci, G. (2002) Comment on “Prognostic Factors in High-Grade Osteosarcoma of the Extremities or Trunk: An Analysis of 1,702 Patients Treated on Neoadjuvant Cooperative Osteosarcoma Study Group Protocols”. Journal of Clinical Oncology, 20, 2910-2911. https://doi.org/10.1200/JCO.2002.20.12.2910

  59. 59. Zhang, X., Xu, S., Hu, C., et al. (2020) LncRNA ST8SIA6-AS1 Promotes Hepatocellular Carcinoma Progression by Regulating MAGEA3 and DCAF4L2 Expression. Biochemical and Biophysical Research Communications, 533, 1039-1047. https://doi.org/10.1016/j.bbrc.2020.09.115

  60. NOTES

    *通讯作者。

期刊菜单