Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 79347 , 9 pages
10.12677/ACM.2024.141101

靶向第二代测序技术在病原体检测中的作用

罗宁*,何泰瑜,康娟,张大志#

重庆医科大学附属第二医院感染科,重庆医科大学感染性疾病分子生物学教育部重点实验室,重庆医科大学病毒性肝炎研究所,重庆

收稿日期:2023年12月17日;录用日期:2024年1月10日;发布日期:2024年1月17日

摘要

病原学的早期准确识别对于感染性疾病的诊治至关重要。随着基因检测技术的发展,第二代测序技术正被逐步应用于临床病原体的检测。作为第二代测序技术的一个分类,靶向第二代测序技术能选择性地扩增或富集感兴趣的基因组区域,再进行大规模测序,快速准确地检出目标病原体。本文对靶向第二代测序技术在感染性病原体检测中的应用现状进行综述,讨论靶向第二代测序技术作为感染性疾病诊断工具的应用前景。

关键词

靶向第二代测序,感染性疾病,病原体,诊断

The Role of Targeted Next-Generation Sequencing in Pathogen Detection

Ning Luo*, Taiyu He, Juan Kang, Dazhi Zhang#

Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing

Received: Dec. 17th, 2023; accepted: Jan. 10th, 2024; published: Jan. 17th, 2024

ABSTRACT

The early and accurate identification of the etiology is crucial for the diagnosis and treatment of infectious diseases. With the development of genetic detection technology, the next-generation sequencing technology (NGS) is gradually being applied to the detection of clinical pathogens. Targeted next-generation sequencing (tNGS), as a classification of NGS, can selectively amplify or enrich genomic regions of interest, enabling rapid and accurate detection of the target pathogens through large-scale sequencing. This paper provides a comprehensive review of the application of tNGS in detecting infectious pathogens and explores its potential as a diagnostic tool for infectious diseases.

Keywords:Targeted Next-Generation Sequencing, Infectious Diseases, Pathogen, Diagnosis

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来,随着经济的发展、生活水平的提高以及医学的进步,全球感染性疾病的负担有所下降,但感染性疾病仍是全球人口发病和死亡的主要原因之一 [1] 。准确、及时的病原学诊断对于指导感染性疾病的治疗方案至关重要。目前临床常用的病原体检测方法主要有涂片镜检法、培养法、免疫学方法、分子生物学技术等,但这些检测方法均存在一定局限性 [2] [3] 。涂片镜检法操作简单,用时短,但敏感性低,且无法辨认形态相似的细菌。培养法是病原学诊断的金标准,但耗时长,不利于早期诊断,且阳性率较低。免疫学抗原抗体检测及分子生物学技术可以快速、灵敏地鉴定病原微生物,但每次只能鉴定一种或少数几种病原体,常常会出现检测方法未覆盖致病病原体的情况。目前亟需一种能够快速、准确、全面地检测致病病原体的方法协助感染性疾病的预防及诊治。

第二代测序(next-generation sequencing, NGS)能够大规模地检测样本中的核酸序列,已逐渐从一种研究工具过渡为诊断方法 [4] 。常用于病原体检测的主要是宏基因组第二代测序(metagenomics next-generation sequencing, mNGS)和靶向第二代测序(targeted next-generation sequencing, tNGS)。mNGS对标本中的所有核酸序列进行无差别、无选择性的检测。mNGS能检测已知及未知病原体,在感染性病原体的检测应用中已有专家共识。但目前在临床应用中仍有一些不足之处需要改进,如不能明确检测到的病原体核酸序列结果与感染的关系、测序深度不够、高成本等 [5] [6] 。tNGS是对特定的目标片段进行富集或扩增后进行测序。tNGS主要检测已发现的致病病原体,敏感性和特异性更高,耗时更短,数据分析更简易,成本更低 [7] - [13] 。tNGS比培养法具有更高的敏感性(53% vs. 42%),具有高特异性(98%)。相较于mNGS,tNGS的灵敏度可提高约30%,诊断时间可缩短9个小时。针对某些特定病原体,tNGS可以在不到3.5小时内实现明确诊断。tNGS成本可以为mNGS的四分之一。因此,tNGS在感染性疾病病原体检测中可能是一种更优的检测手段。

本文对tNGS在感染性病原体检测中的应用现状进行综述,讨论tNGS作为感染性疾病诊断工具的应用前景。

2. tNGS在血流感染诊断中的应用

在脓毒症或脓毒性休克患者中,血流感染约占40%,重症监护室的感染患者中,血流感染占20% [14] 。血培养是血流感染诊断的金标准,但获得结果往往需要几天甚至一周的时间,导致患者错过最佳的临床治疗时机,增加死亡风险。有研究显示在早期非适当药物治疗的情况下,重症监护室获得性血流感染患者30天死亡风险增加40% [15] 。

Madiha Fida等 [16] 用16S rRNA基因靶向扩增联合NGS的方法(tNGS)对脓毒症患者的血浆标本进行检测,在47%的病例中鉴定出了潜在的致病病原体,而血液培养检出率为32%,该团队认为由于tNGS一次可以检测到多种病原体,在某些情况下还能根据检测结果推测菌血症的来源。Flurin Laure [17] 等进行了一项关于感染性心内膜炎患者血液tNGS检测的前瞻性试点研究,其受试者为28名确诊患者及7名可疑患者,结果显示20个全血(59%)和16个血浆(47%)样本检测呈阳性,当全血和血浆检测结果合并时,在23名受试者中发现阳性tNGS结果(66%),在6例培养阴性病例中有5例鉴定出潜在的病原体。tNGS检测对血培养阴性疑似患者有较大的诊断价值,可作为感染性心内膜炎血培养阴性患者的有效辅助诊断方法。

李倩 [18] 等使用靶向序列富集与第二代测序相结合的tNGS方法对模拟血液样本进行检测,表现出了较好的敏感度(95.38%)和特异性(95.45%)。与实际掺入菌量相比,该法检测结果Kappa值为0.839~1.000 (P < 0.05),一致性良好。该方法在15个小时内可给出准确结果,但仅能检测4种致病病原体,相比于某些多重聚合酶链反应(polymerase chain reaction, PCR)方法并没有明显优势 [19] 。该团队在后续研究中 [20] ,使用扩增目标片段的tNGS方法扩大了致病病原体的检测范围,其选择的16S rRNA通用引物和47种常见病原体的种级引物可以准确识别47种常见细菌和真菌,同时提供68个耐药基因资料。该方法仅能兼容Ion Torrent测序平台,且使用的引物需经过特殊修饰。由于检测范围扩大,耗时较之前延长了21个小时。Mathilde Gondard等 [21] 对原有的针对血源性寄生虫检测的宏基因组学方法进行改进后产生的tNGS方法可使从DNA的提取到获得结果的时间减少两天,在不考虑人力成本的情况下,每个样本的平均成本从40美元下降到11美元。

Saskia Decuypere等 [22] 进行的研究表明,基于16S rRNA基因扩增的tNGS方法是识别患者血液中细菌的有效方法,检测的75例患者标本中有18例(24%)检测出具有临床意义的细菌,而血液培养为12例(16%);血液培养阳性的标本中也有4例tNGS检测为阴性,研究者认为这可能是血液中病原体数量少,可供提取的DNA不足,导致了tNGS漏检。Melita A. Gordon等 [23] 研究提示,在细菌血流感染过程中,血液中的细菌载量可以低至每毫升血液中1个菌落形成单位。因此,当感病原体数量过少时,有可能出现用于检测的标本中不含病原体核酸的情况,导致tNGS阴性。

针对血流系统感染,tNGS方法发现致病病原体的敏感性及所用时间均优于常规血培养。但多数研究纳入的样本量较少 [16] [17] [18] ,还需要扩大样本数进一步研究验证结果。

3. tNGS在呼吸系统感染诊断中的应用

在住院的成人非免疫缺陷患者中,多种微生物引起的社区获得性肺炎发生率为6%~26% [24] 。在大多数下呼吸道感染的研究中,有很大比例的病例没有确定病原体。Jieming Qu等 [25] 的研究显示,即使联合mNGS方法,仍有高达25%的重症社区获得性肺炎病例不能确定病原体,而仅使用常规培养时病原体阳性率仅为14.4%。S. Ewig等 [26] 的研究显示有40%社区获得性肺炎患者的病因不明。Brandon J. Webb等 [27] 研究发现广谱抗生素的使用可能与肺炎患者较差的预后相关,需要准确的方法来更好地识别需要广谱抗生素治疗的小比例肺炎患者。

郑凯文等 [28] 建立了多重PCR联合tNGS方法,用于检测临床肺泡灌洗液标本,该方法包括肺炎克雷伯菌、鲍曼不动杆菌等20种下呼吸道感染常见病原体。该法检测灵敏度为100%,检测阳性率为79.41%,明显高于培养法(32.25%),与培养法的一致率为50%。该方法检测耗时较培养法缩短,覆盖病原体范围更广。Ruihong Lin等 [29] 评估了tNGS在检测儿童支气管肺泡灌洗液标本中呼吸道病原体的性能,与培养结果相比,tNGS的敏感性和特异性分别为84.4%和97.7%,tNGS在检测包括肺炎支原体在内的培养困难的细菌方面显示出了优势。Li Shiying等 [11] 使用tNGS靶向检测153种病原体(覆盖了95%以上的呼吸道感染病原体),tNGS和mNGS的总体微生物检出率分别为82.17% (106/129)和86.51% (109/126),两者之间无显著性差异(P = 0.41),但tNGS成本为mNGS的四分之一。Ana Domazetovska等 [30] 使用对嗜肺军团菌的57个基因进行靶向测序的tNGS方法可直接从人呼吸道样本中准确地进行嗜肺军团菌的系统发育分析。

Priti Kambli等 [31] 研究发现tNGS检测未经培养的痰标本中的耐药结核分枝杆菌相较于药敏试验表型检测用时更短(中位数3天vs. 21天,P = 0.0068);与药敏试验表型检测相比,tNGS的一致性为93.6%,对所有药物的总体敏感性为83.5%,特异性为100%。Wang Qiao等 [32] 评估发现接受一线抗结核药物治疗的患者痰液tNGS检测结果与药敏试验表型检测结果相比,tNGS对于异烟肼检测的敏感性和特异性分别达到了80%和100%。Doctor B. Sibandze等 [33] 采用tNGS对56名结核患者的粪便标本进行结核分枝杆菌复合物DNA检测,其中有38名患者的样本(68%)为阳性。阳性样本中有28个(74%)获得了完整的结核分枝杆菌复合耐药预测报告,结果与痰液标本药敏试验表型检测结果高度一致(κ = 0.82)。随后,验证队列(n = 21)也表明粪便tNGS和痰液标本药敏试验表型检测结果之间具有高度一致性(κ = 0.84)。tNGS在对于结核分支杆菌检测优于传统方法,可同时检测耐药性 [34] [35] [36] [37] 。

Li Fei等 [38] 使用tNGS对47名重症社区获得性肺炎患儿的48份肺泡灌洗液标本进行病原微生物检测,以多重PCR结果为标准,tNGS的总病原体检出率为83.3% (P = 0.003),其敏感性和阳性预测值(positive predictive value, PPV)分别为83.3%和100.0%。而以传统检测方法(培养、直接荧光抗体法、单重PCR)为标准,两种方法检出率相似(P = 0.232),tNGS的敏感性和特异性分别为87.1%和100.0%,PPV和阴性预测值(negative predictive value, NPV)分别为100.0%和64.2%。该研究tNGS检出率低于多重PCR并且和传统检测方法无明显差别的情况,可能是由于tNGS靶向引物涵盖的病原体范围较窄。

针对呼吸系统感染,tNGS的灵敏度、用时均优于培养法。对于结核分枝杆菌的检测也优于传统检测方法。tNGS靶向引物的设计需要包括所有常见的致病病原体。

4. tNGS在其他系统感染诊断中的应用

除了常见的血流及呼吸系统感染病原体外,还有研究将tNGS用于粪便、脑脊液、滑膜液、腹膜透析液、肺组织等标本的病原体检测。Song Jing等 [39] 对福尔马林固定和石蜡包埋组织(骨与关节、肺、胸膜和淋巴结)进行tNGS检测,研究表明tNGS是一种能快速、准确地提高耐药结核病诊断能力的方法。以药敏试验表型检测结果为标准,利福平、异烟肼和乙胺丁醇的敏感性[95%置信区间]分别为96% (79.65%~99.90%)、93.55% (78.58%~99.21%)和71.43% (35.24%~92.44%),研究评估了6种二线药物,其敏感性范围为卷曲霉素的23.53% (9.05%~47.77%)至链霉素为86.84% (72.20%~94.72%),所有药物的特异性均>94.51%。对于无法取得呼吸道标本的结核病患者,使用其他标本进行tNGS检测是一种新的、可靠的诊断方式。Guang Zhang等 [40] 采用tNGS检测结核分枝杆菌及其耐药基因和耐药相关突变,对脊柱结核的检出率为100%,显著高于培养法,且检测到多种耐药基因和耐药相关突变。

Flurin Laure等 [7] 使用tNGS (针对16S rRNA基因的V1-V3区域进行PCR扩增)对2146个样本(肺组织、伤口活检组织、腹水、脑脊液等)进行了检测,发现tNGS比培养法具有更高的敏感性(53% vs. 42%, P < 0.001),具有高特异性(98%),其PPV和NPV分别为97%和60%。Zhou等 [41] 采用tNGS (选择性扩增16S rRNA基因V3~V5区域)检测艰难梭菌阳性标本(定量PCR检测为阳性)中的艰难梭菌,检出率为90.9%。Luke Kingry等 [42] 利用tNGS (扩增16S rRNA基因V1~V2区域)对疑似蜱传疾病患者的血液、脑脊液、新鲜组织等样本进行检测,检出能力与实时PCR相当,可准确检测标本中的蜱传细菌病原体,在属水平分类预测立克次体等病原体的准确率为100%,有助于明确临床症状与蜱传疾病相似的其他感染性疾病的诊断。

Stebner A等 [43] 采用tNGS (基于16S rDNA基因)对颅内脓肿形成患者的脓液及脑膜炎患者的脑脊液进行检测,发现tNGS所测得的细菌组成比微生物培养和Sanger测序更加多样化。该研究采用的tNGS耗时约2天,考虑到颅内感染的严重性和治疗不当导致抗生素使用时间的延长,将tNGS用于该类患者是有价值的。Gao Daiquan等 [9] 使用tNGS (包括544种脑膜炎相关病原体)检测了24例脑膜炎患者的脑脊液,发现tNGS的PPV为77.3%,NPV为56.3%,而mNGS的PPV和NPV分别为76.9%和44.0%。相较于mNGS,tNGS的灵敏度提高了约30%,诊断时间更短(15小时vs. 24小时),且成本更低。

Flurin Laure等 [44] 利用tNGS (扩增16S rRNA基因的V1~V3区域)检测肘关节周围滑膜液,结果显示tNGS敏感性为85%,培养的敏感性为77% (P = 0.045)。该团队后又利用tNGS检测了多处关节(髋关节、膝关节、肩关节、肘关节)滑膜液,发现滑膜液培养的敏感性为72%,而tNGS为69% (P = 0.74),滑膜液培养联合tNGS时的敏感性为83%,高于单独培养(P = 0.04),滑膜液培养、tNGS和两者联合的NPV分别为92%、91%和95% [45] 。Ponraj Diana Salomi等 [46] 将SLST (single-locus sequence typing)片段作为痤疮杆菌的扩增子靶点,发现该方法有助于区分骨科植入物的感染与污染,但还需进一步的研究验证。Wesley G van Hougenhouck-Tulleken等 [47] 使用tNGS (基于16S rRNA)检测腹膜透析腹膜炎的病原体,与基于培养检测的病原体达到80%的一致性,在对真菌和不易培养细菌进行盲法检测时一致性提高到100% (2个样本)。Alexis Trecourt等 [48] 使用tNGS对诊断为真菌感染的福尔马林固定的组织样本(皮肤、脑组织、肺组织等)进行检测,与Sanger测序相比,敏感性提高了36.5% (P = 0.00001)。

J.Lippert等 [49] 的研究显示tNGS能够检测宫颈癌相关的人乳头瘤病毒并对其进行基因分型,且使用的成本较低。Andersen Karoline等 [50] 使用tNGS来检测所有25种致癌、可能致癌和可能致癌的人乳头瘤病毒类型以及低风险类型HPV6和HPV11的基因型,结果显示该tNGS方法与商用的HPV检测方法具有相似的敏感性和特异性,且检测范围更大,可减少假阴性的结果。Karolina M. Andralojc等 [51] 使用tNGS方法对宫颈刮片脱落细胞进行HPV基因型检测,同时对与宫颈上皮内瘤变相关的人类宿主基因进行基因分型和表达水平的检测,识别高危HPV阳性妇女发生或发展为高级别宫颈上皮内瘤变的风险。

除了常见的血液、痰液等标本,tNGS对其他标本如脑脊液、腹水、人体组织等进行检测的敏感性及用时等也优于传统的检测方法。

5. tNGS在感染性疾病诊断中的局限性与优势

tNGS只能检测已知病原体,若检测标本中包括靶向富集或扩增的方法未覆盖的已知病原体,则tNGS的结果将产生偏差。某些特异性不强的通用型引物,不能区分基因序列相似性高的病原微生物,例如靶向16S rRNA基因测序不能区分产毒艰难梭菌和非产毒艰难梭菌 [41] 。当引物特异性不够高时,人源背景核酸序列对检测结果也会有干扰。有研究在扩增16S rRNA基因片段的时候采用了两阶段扩增策略,减少了非模板对照的扩增量,从而降低了背景核酸序列的干扰 [52] 。根据现有研究来看,设计的引物和测序平台也有适配要求,相同的引物在不同的测序平台使用,其检测结果会有不同 [53] [54] [55] 。在选择、设计tNGS引物时,应做到病原体覆盖面广、引物特异性强,以提高检测的准确性。

总体来看,tNGS在血流感染、呼吸系统、神经系统及其他系统感染性疾病病原体检测中均显示出良好的临床应用价值。tNGS较常规培养具有更高的敏感性 [7] [16] [17] [22] [28] [44] ,且能同时检测耐药基因 [20] [31] [32] ,这有利于治疗方案的选择和优化。NGS在检测病原体方面也比血培养具有更高的敏感性,但对于NGS检测结果的临床意义仍存在问题 [56] 。与mNGS相比,tNGS检测更敏感、所用时间更短、成本更低 [9] 。Zhao Na等 [57] 发现tNGS在微生物分析方面比mNGS更高效(tNGS比mNGS的微生物检出序列数更高,可高达250倍;在所有样本中检出的病毒种类更多,tNGS检出1161种,而mNGS仅检出694种)。与单独sanger测序相比,tNGS的阳性率更高、能检测到的病原体种类更多 [7] [43] 。此外,tNGS还能弥补传统检测方法因无法获得理想标本而不能检测的缺陷 [33] 。总之,相较于传统检测手段和mNGS,tNGS具有检出率高、检测时间短、覆盖病原体广、成本较低等优势。

6. 展望

从现有研究来看,tNGS在检出率、检测时间、病原体覆盖范围等方面均优于目前临床常用的检测手段,在检测成本、后续数据分析等方面又优于mNGS。tNGS可在一次测试中全面、快速、准确地检测现已知的病原体,为感染性疾病的诊断,特别是临床表现相对隐匿/非特异性的患者的感染病原体识别提供有力帮助。在未来,我们还需结合mNGS等方法检测报道的病原体及其核酸序列,增加tNGS技术的病原体检测种类、扩大耐药基因检测范围,进行更精确的病原体分型,提高检测特异性。随着生物信息学、分子生物学等学科的不断发展,tNGS有望为临床感染性疾病的诊治带来新的突破。

文章引用

罗 宁,何泰瑜,康 娟,张大志. 靶向第二代测序技术在病原体检测中的作用
The Role of Targeted Next-Generation Sequencing in Pathogen Detection[J]. 临床医学进展, 2024, 14(01): 727-735. https://doi.org/10.12677/ACM.2024.141101

参考文献

  1. 1. 杨娟, 赖圣杰, 余宏杰. 感染性疾病流行现状、防控挑战与应对[J]. 中华疾病控制杂志, 2017, 21(7): 647-649, 674. https://doi.org/10.16462/j.cnki.zhjbkz.2017.07.001

  2. 2. Miao, Q., Ma, Y., Wang, Q., et al. (2018) Microbiological Diagnostic Performance of Metagenomic Next-Generation Sequencing When Applied to Clinical Practice. Clinical Infec-tious Diseases, 67, S231-S240. https://doi.org/10.1093/cid/ciy693

  3. 3. 刘韦萍, 夏惠, 陶志勇. 宏基因组测序技术在感染性疾病诊断中的应用[J]. 中国病原生物学杂志, 2021, 16(5): 614-618. https://doi.org/10.13350/j.cjpb.210523

  4. 4. Mitchell, S.L. and Simner, P.J. (2019) Next-Generation Sequencing in Clinical Microbiology: Are We There Yet? Clinics in Laborato-ry Medicine, 39, 405-418. https://doi.org/10.1016/j.cll.2019.05.003

  5. 5. 中华医学会检验医学分会. 高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识[J]. 中华检验医学杂志, 2020, 43(12): 1181-1195.

  6. 6. 罗越, 胡洋洋, 张兴, 等. 《中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识》解读[J]. 河北医科大学学报, 2021, 42(7): 745-749.

  7. 7. Flurin, L., Wolf, M.J., Mutchler, M.M., et al. (2022) Targeted Meta-genomic Sequencing-Based Approach Applied to 2146 Tissue and Body Fluid Samples in Routine Clinical Practice. Clinical Infectious Diseases, 75, 1800-1808. https://doi.org/10.1093/cid/ciac247

  8. 8. Brinkmann, A., Ergünay, K., Radonić, A., et al. (2017) Development and Preliminary Evaluation of a Multiplexed Amplification and next Generation Sequencing Method for Viral Hemorrhagic Fever Diagnostics. PLOS Neglected Tropical Diseases, 11, e0006075. https://doi.org/10.1371/journal.pntd.0006075

  9. 9. Gao, D., Hu, Y., Jiang, X., et al. (2021) Applying the Patho-gen-Targeted Next-Generation Sequencing Method to Pathogen Identification in Cerebrospinal Fluid. Annals of Transla-tional Medicine, 9, Article 1675. https://doi.org/10.21037/atm-21-5488

  10. 10. Gaston, D.C., Miller, H.B., Fissel, J.A., et al. (2022) Evaluation of Metagenomic and Targeted Next-Generation Sequencing Workflows for Detection of Respiratory Pathogens from Bron-choalveolar Lavage Fluid Specimens. Journal of Clinical Microbiology, 60, e00526-22. https://doi.org/10.1128/jcm.00526-22

  11. 11. Li, S., Tong, J., Liu, Y., Shen, W. and Hu, P. (2022) Targeted Next Generation Sequencing Is Comparable with Metagenomic Next Generation Sequencing in Adults with Pneumonia for Pathogenic Microorganism Detection. Journal of Infection, 85, e127-e129. https://doi.org/10.1016/j.jinf.2022.08.022

  12. 12. Moorlag, S.J.C.F.M., Coolen, J.P.M., van den Bosch, B., et al. (2023) Targeting the 16S rRNA Gene by Reverse Complement PCR Next-Generation Sequencing: Specific and Sensitive Detection and Identification of Microbes Directly in Clinical Samples. Microbiology Spectrum, 11, Article ID: 0448322. https://doi.org/10.1128/spectrum.04483-22

  13. 13. Poulsen, S.H., Søgaard, K.K., Fuursted, K. and Nielsen, H.L. (2023) Evaluating the Diagnostic Accuracy and Clinical Utility of 16S and 18S rRNA Gene Targeted Next-Generation Sequencing Based on Five Years of Clinical Experience. Infectious Diseases, 55, 767-775. https://doi.org/10.1080/23744235.2023.2241550

  14. 14. Timsit, J.F., Ruppé, E., Barbier, F., Tabah, A. and Bassetti, M. (2020) Bloodstream Infections in Critically Ill Patients: An Expert Statement. Intensive Care Medicine, 46, 266-284. https://doi.org/10.1007/s00134-020-05950-6

  15. 15. Adrie, C., Garrouste-Orgeas, M., Ibn Essaied, W., et al. (2017) Attributable Mortality of ICU-Acquired Bloodstream Infections: Impact of the Source, Causative Micro-Organism, Re-sistance Profile and Antimicrobial Therapy. Journal of Infection, 74, 131-141. https://doi.org/10.1016/j.jinf.2016.11.001

  16. 16. Fida, M., Wolf, M.J., Hamdi, A., et al. (2021) Detection of Patho-genic Bacteria from Septic Patients Using 16S Ribosomal RNA Gene—Targeted Metagenomic Sequencing. Clinical In-fectious Diseases, 73, 1165-1172. https://doi.org/10.1093/cid/ciab349

  17. 17. L, F., Mj, W., Cr, F., et al. (2022) Pathogen Detection in Infective Endo-carditis Using Targeted Metagenomics on Whole Blood and Plasma: A Prospective Pilot Study. Journal of Clinical Mi-crobiology, 60, e0062122. https://doi.org/10.1128/jcm.00621-22

  18. 18. 李倩, 刘鹏, 张彦, 等. 检测4种血流感染病原体的靶向序列富集与测序相结合技术方法评价[J]. 军事医学, 2018, 42(1): 53-56.

  19. 19. 胡翀, 马薇, 张可昕, 等. 多重PCR方法快速检测血流感染10种常见病原菌方法的建立与应用[J]. 中华医院感染学杂志, 2018, 28(7): 961-965, 978.

  20. 20. Li, Q., Huang, W., Zhang, S., et al. (2022) Target-Enriched Sequencing Enables Accurate Identification of Bloodstream In-fections in Whole Blood. Journal of Microbiological Methods, 192, Article ID: 106391. https://doi.org/10.1016/j.mimet.2021.106391

  21. 21. Gondard, M., Lane, M., Barratt, J., et al. (2023) Simultaneous Targeted Amplicon Deep Sequencing and Library Preparation for a Time and Cost-Effective Universal Parasite Diagnos-tic Sequencing Approach. Parasitology Research, 122, 3243-3256. https://doi.org/10.1007/s00436-023-07991-4

  22. 22. Decuypere, S., Meehan, C.J., Van Puyvelde, S., et al. (2016) Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach. PLOS Neglected Tropical Diseases, 10, e0004470. https://doi.org/10.1371/journal.pntd.0004470

  23. 23. Gordon, M.A., Kankwatira, A.M.K., Mwafulirwa, G., et al. (2010) Invasive Non-Typhoid Salmonellae Establish Systemic Intracellular Infection in HIV-Infected Adults: An Emerging Disease Pathogenesis. Clinical Infectious Diseases, 50, 953-962. https://doi.org/10.1086/651080

  24. 24. Woodhead, M., Blasi, F., Ewig, S., et al. (2011) Guidelines for the Manage-ment of Adult Lower Respiratory Tract Infections—Full Version. Clinical Microbiology and Infection, 17, E1-E59. https://doi.org/10.1111/j.1469-0691.2011.03672.x

  25. 25. Qu, J., Zhang, J., Chen, Y., et al. (2022) Aetiology of Se-vere Community Acquired Pneumonia in Adults Identified by Combined Detection Methods: A Multi-Centre Prospective Study in China. Emerging Microbes & Infections, 11, 556-566. https://doi.org/10.1080/22221751.2022.2035194

  26. 26. Ewig, S., Torres, A., Angeles Marcos, M., et al. (2002) Factors Associated with Unknown Aetiology in Patients with Community-Acquired Pneumonia. The European Respir-atory Journal, 20, 1254-1262. https://doi.org/10.1183/09031936.02.01942001

  27. 27. Webb, B.J., Sorensen, J., Jephson, A., Mecham, I. and Dean, N.C. (2019) Broad-Spectrum Antibiotic Use and Poor Outcomes in Community-Onset Pneumonia: A Cohort Study. European Respiratory Journal, 54, Article ID: 1900057. https://doi.org/10.1183/13993003.00057-2019

  28. 28. 郑凯文, 黄晓园, 陈渡波, 等. 基于多重PCR和第二代高通量测序技术快速检测下呼吸道感染病原微生物方法的建立和应用[J]. 国际检验医学杂志, 2020, 41(17): 2066-2070.

  29. 29. Lin, R., Xing, Z., Liu, X., et al. (2023) Performance of Targeted Next-Generation Sequencing in the Detection of Respiratory Pathogens and Antimicrobial Resistance Genes for Children. Journal of Medical Microbiology, 72, 11. https://doi.org/10.1099/jmm.0.001771

  30. 30. Domazetovska, A., Jensen, S.O., Gray, M., Radzieta, M. and Maley, M. (2022) Culture-Free Phylogenetic Analysis of Legionella Pneumophila Using Targeted CRISPR/Cas9 Next-Generation Sequencing. Microbiology Spectrum, 10, e0035922. https://doi.org/10.1128/spectrum.00359-22

  31. 31. Kambli, P., Ajbani, K., Kazi, M., et al. (2021) Targeted Next Generation Sequencing Directly from Sputum for Comprehensive Ge-netic Information on Drug Resistant Mycobacterium Tuberculosis. Tuberculosis, 127, Article ID: 102051. https://doi.org/10.1016/j.tube.2021.102051

  32. 32. Wang, Q., Modongo, C., Allender, C., et al. (2019) Utility of Tar-geted, Amplicon-Based Deep Sequencing to Detect Resistance to First-Line Tuberculosis Drugs in Botswana. Antimicro-bial Agents and Chemotherapy, 63, e00982-19. https://doi.org/10.1128/AAC.00982-19

  33. 33. Sibandze, D.B., Kay, A., Dreyer, V., et al. (2022) Rapid Molecular Diagnostics of Tuberculosis Resistance by Targeted Stool Sequencing. Genome Medicine, 14, Article No. 52. https://doi.org/10.1186/s13073-022-01054-6

  34. 34. Wu, X., Liang, R., Xiao, Y., et al. (2023) Application of Target-ed next Generation Sequencing Technology in the Diagnosis of Mycobacterium Tuberculosis and First Line Drugs Re-sistance Directly from Cell-Free DNA of Bronchoalveolar Lavage Fluid. Journal of Infection, 86, 399-401. https://doi.org/10.1016/j.jinf.2023.01.031

  35. 35. Mansoor, H., Hirani, N., Chavan, V., et al. (2023) Clinical Utility of Target-Based Next-Generation Sequencing for Drug-Resistant TB. The International Journal of Tuberculosis and Lung Disease, 27, 41-48. https://doi.org/10.5588/ijtld.22.0138

  36. 36. Wu, S.H., Xiao, Y.X., Hsiao, H.C. and Jou, R.W. (2022) Development and Assessment of a Novel Whole-Gene-Based Targeted Next-Generation Sequencing Assay for Detecting the Suscepti-bility of Mycobacterium Tuberculosis to 14 Drugs. Microbiology Spectrum, 10, e0260522. https://doi.org/10.1128/spectrum.02605-22

  37. 37. Murphy, S.G., Smith, C., Lapierre, P., et al. (2023) Direct Detec-tion of Drug-Resistant Mycobacterium Tuberculosis Using Targeted Next Generation Sequencing. Frontiers in Public Health, 11, Article 1206056. https://doi.org/10.3389/fpubh.2023.1206056

  38. 38. Li, F., Wang, Y., Zhang, Y., et al. (2021) Etiology of Severe Pneumonia in Children in Alveolar Lavage Fluid Using a High-Throughput Gene Targeted Amplicon Sequencing Assay. Frontiers in Pediatrics, 9, Article 659164. https://doi.org/10.3389/fped.2021.659164

  39. 39. Song, J., Du, W., Liu, Z., et al. (2022) Application of Am-plicon-Based Targeted NGS Technology for Diagnosis of Drug-Resistant Tuberculosis Using FFPE Specimens. Micro-biology Spectrum, 10, e01358-21. https://doi.org/10.1128/spectrum.01358-21

  40. 40. Zhang, G., Zhang, H., Zhang, Y., et al. (2023) Targeted Next-Generation Sequencing Technology Showed Great Potential in Identifying Spinal Tuberculosis and Predicting the Drug Resistance. Journal of Infection, 87, E110-E112. https://doi.org/10.1016/j.jinf.2023.10.018

  41. 41. Zhou, Y., Wylie, K.M., El Feghaly, R.E., et al. (2016) Metagenomic Approach for Identification of the Pathogens Associated with Diarrhea in Stool Specimens. Journal of Clinical Microbi-ology, 54, 368-375. https://doi.org/10.1128/JCM.01965-15

  42. 42. Kingry, L., Sheldon, S., Oatman, S., et al. (2020) Targeted Meta-genomics for Clinical Detection and Discovery of Bacterial Tick-Borne Pathogens. Journal of Clinical Microbiology, 58, e00147-20. https://doi.org/10.1128/JCM.00147-20

  43. 43. Stebner, A., Ensser, A., Geißdörfer, W., et al. (2021) Molecular Di-agnosis of Polymicrobial Brain Abscesses with 16S-rDNA-Based Next-Generation Sequencing. Clinical Microbiology and Infection, 27, 76-82. https://doi.org/10.1016/j.cmi.2020.03.028

  44. 44. Flurin, L., Wolf, M.J., Greenwood-Quaintance, K.E., et al. (2021) Targeted Next Generation Sequencing for Elbow Periprosthetic Joint Infection Diagnosis. Diagnostic Microbiology and Infectious Disease, 101, Article ID: 115448. https://doi.org/10.1016/j.diagmicrobio.2021.115448

  45. 45. Flurin, L., Hemenway, J.J., Fisher, C.R., et al. (2022) Clinical Use of a 16S Ribosomal RNA Gene-Based Sanger and/or Next Generation Sequencing Assay to Test Preopera-tive Synovial Fluid for Periprosthetic Joint Infection Diagnosis. Clinical Microbiology, 13, e0132222. https://doi.org/10.1128/mbio.01322-22

  46. 46. Ponraj, D.S., Lange, J., Falstie-Jensen, T., et al. (2022) Am-plicon-Based Next-Generation Sequencing as a Diagnostic Tool for the Detection of Phylotypes of Cutibacterium Acnes in Orthopedic Implant-Associated Infections. Frontiers in Microbiology, 13, Article 866893. https://doi.org/10.3389/fmicb.2022.866893

  47. 47. van Hougenhouck-Tulleken, W.G., Lebre, P.H., Said, M., et al. (2020) Bacterial Pathogens in Peritoneal Dialysis Peritonitis: Insights from next-Generation Sequencing. Peritoneal Di-alysis International: Journal of the International Society for Peritoneal Dialysis, 40, 581-586. https://doi.org/10.1177/0896860820908473

  48. 48. Trecourt, A., Rabodonirina, M., Mauduit, C., et al. (2023) Fungal Integrated Histomolecular Diagnosis Using Targeted Next-Generation Sequencing on Formalin-Fixed Paraf-fin-Embedded Tissues. Journal of Clinical Microbiology, 61, e0152022. https://doi.org/10.1128/jcm.01520-22

  49. 49. Lippert, J., Bønløkke, S., Utke, A., et al. (2021) Targeted Next Genera-tion Sequencing Panel for HPV Genotyping in Cervical Cancer. Experimental and Molecular Pathology, 118, Article ID: 104568. https://doi.org/10.1016/j.yexmp.2020.104568

  50. 50. Andersen, K., Holm, K., Tranberg, M., et al. (2022) Targeted Next Generation Sequencing for Human Papillomavirus Genotyping in Cervical Liquid-Based Cytology Samples. Can-cers, 14, Article 652. https://doi.org/10.3390/cancers14030652

  51. 51. Andralojc, K.M., Elmelik, D., Rasing, M., et al. (2022) Targeted RNA Next Generation Sequencing Analysis of Cervical Smears Can Predict the Presence of hrHPV-Induced Cervical Lesions. BMC medicine, 20, Article No. 206. https://doi.org/10.1186/s12916-022-02386-1

  52. 52. Salipante, S.J., Sengupta, D.J., Rosenthal, C., et al. (2013) Rapid 16S rRNA Next-Generation Sequencing of Polymicrobial Clinical Samples for Diagnosis of Complex Bacterial Infec-tions. PLOS ONE, 8, e65226. https://doi.org/10.1371/journal.pone.0065226

  53. 53. Colman, R.E., Mace, A., Seifert, M., et al. (2019) Whole-Genome and Targeted Sequencing of Drug-Resistant Mycobacterium Tuberculosis on the iSeq100 and MiSeq: A Performance, Ease-of-Use, and Cost Evaluation. PLOS Medicine, 16, e1002794. https://doi.org/10.1371/journal.pmed.1002794

  54. 54. Cabibbe, A.M., Spitaleri, A., Battaglia, S., et al. (2020) Appli-cation of Targeted Next-Generation Sequencing Assay on a Portable Sequencing Platform for Culture-Free Detection of Drug-Resistant Tuberculosis from Clinical Samples. Journal of Clinical Microbiology, 58, e00632-20. https://doi.org/10.1128/JCM.00632-20

  55. 55. Kunasol, C., Dondorp, A.M., Batty, E.M., et al. (2022) Comparative Analysis of Targeted Next-Generation Sequencing for Plasmodium Falciparum Drug Resistance Markers. Scientific Re-ports, 12, Article No. 5563. https://doi.org/10.1038/s41598-022-09474-5

  56. 56. Gosiewski, T., Ludwig-Galezowska, A.H., Huminska, K., et al. (2017) Comprehensive Detection and Identification of Bacterial DNA in the Blood of Patients with Sepsis and Healthy Volunteers Using Next-Generation Sequencing Method—The Observation of DNAemia. European Journal of Clinical Microbiology & Infectious Diseases, 36, 329-336. https://doi.org/10.1007/s10096-016-2805-7

  57. 57. Zhao, N., Cao, J., Xu, J., et al. (2021) Targeting RNA with Next- and Third-Generation Sequencing Improves Pathogen Identification in Clinical Samples. Advanced Science, 8, Article ID: 2102593. https://doi.org/10.1002/advs.202102593

  58. NOTES

    *第一作者。

    #通讯作者。

期刊菜单