Advances in Clinical Medicine
Vol. 11  No. 11 ( 2021 ), Article ID: 46844 , 9 pages
10.12677/ACM.2021.1111813

格列本脲在脑出血水肿期的应用前景

李娟,王涛,师宁,冯鑫慧

延安大学附属医院,神经内科,陕西 延安

收稿日期:2021年10月26日;录用日期:2021年11月23日;发布日期:2021年11月30日

摘要

格列本脲是磺脲类药物的一种,其作为口服降糖药的治疗益处可追溯到1971年。由于其对急性中枢系统损伤的多效保护作用,在近十年中格列本脲再次被关注。格列本脲通过抑制磺脲类受体1 (Sur1)发挥作用。Sur1-瞬时受体电位通道M4型(Trpm4)通道通过使细胞去极化,并允许钠向内流动和钾流出,从而促进水肿的形成,在缺血性和出血性CNS损伤中及脑水肿中发挥着关键作用。脑出血后脑水肿是脑实质内水分的积聚,包括细胞毒性水肿、血管源性水肿和流体静力性水肿。格列本脲通过抑制Sur1-Trpm4通道以及在某些情况下抑制大脑的ATP敏感性钾通道,已经被证实在动物模型的相关疾病中有治疗作用,如:缺血性和出血性脑卒中、外伤性脑损伤、脊髓损伤、转移性脑肿瘤。目前正在进行的相关临床实验有出血性脑卒中和缺血性脑卒中及创伤性脑损伤。这些实验表明Sur1参与了多种中枢神经系统损伤的有关急性病理过程,为临床使用格列本脲提供了新的支持依据。本综述的目的是突出格列本脲在治疗脑损伤中的潜在作用,并提出临床证据支持格列本脲在脑出血中的治疗潜力。

关键词

格列本脲,脑出血,磺脲类受体1,瞬时受体电位通道M4型

Application Prospect of Glibenclamide in Cerebral Hemorrhage Edema

Juan Li, Tao Wang, Ning Shi, Xinhui Feng

Department of Neurology, Affiliated Hospital of Yan’an University, Yan’an Shaanxi

Received: Oct. 26th, 2021; accepted: Nov. 23rd, 2021; published: Nov. 30th, 2021

ABSTRACT

Glibenclamide is a class of sulfonylureas whose therapeutic benefits as oral hypoglycemic agents date back to 1971. Glibenclamide has attracted renewed attention in recent ten years due to its multipotent protective effect against acute central system injury. Glibenclamide works by inhibiting sulfonylurea receptor 1 (Sur1). Sur1-transient receptor potential channel TYPE M4 (Trpm4) channels play a key role in ischemic and hemorrhagic CNS injury and cerebral edema by depolarizing cells and allowing sodium inward flow and potassium outflow. Cerebral edema after intracerebral hemorrhage is the accumulation of water in the brain parenchyma, including cytotoxic edema, vasogenic edema and hydrostatic edema. Glibenclamide has been shown to be therapeutic in animal models of related diseases, such as ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, and metastatic brain tumors, by inhibiting sur1-TRPM4 channels and, in some cases, ATP-sensitive potassium channels in the brain. Ongoing clinical trials include hemorrhagic stroke, ischemic stroke and traumatic brain injury. These experiments indicated that Sur1 was involved in various acute pathological processes related to central nervous system injury, providing new support for clinical use of glibenclamide. The purpose of this review is to highlight the potential role of glibenclamide in the treatment of brain injury and to present clinical evidence supporting the potential of glibenclamide in the treatment of cerebral hemorrhage.

Keywords:Glibenclamide, Cerebral Hemorrhage, Sulfonylurea Receptor 1, Instantaneous Receptor Potential Channel M4 Type

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 背景介绍

全球每年1500万脑卒中,其中脑出血(ICH)占10%~15%,并且具有高发病率和高死亡率,前30天死亡率高达50%,6个月后仅有20%的患者功能结局良好 [1]。中国人比西方人总体卒中发病率略高,一项荟萃分析显示我国脑出血30天死亡率(95%置信区间)为49.9% (47.3~51.4) [2] 较脑梗死高 [3]。然而,只有12%~39%的脑出血幸存者实现了长期功能恢复 [4]。不仅最初血肿导致的原发性损伤产生的机械刺激可导致肿块效应,而且还会在接下来的几小时到几天导致继发性脑损伤 [5],即脑出血的局部炎症反应和血块成分(例如血红蛋白)的释放会导致继发性损伤和血肿周围组织损伤,包括血脑屏障的破坏 [6]。越来越多的证据表明,这种继发性脑损伤会导致脑出血后的神经功能恶化 [7],脑损伤以及血肿周围水肿的发展 [6]。继发性损伤已被认为是治疗的潜在目标 [8]。血肿周围水肿(PHE)是继发性脑损伤的表现 [5]。原发性脑出血后的血肿周围水肿(PHE),是细胞毒性水肿后早期血管源性水肿的组合 [8]。血肿周围水肿(PHE)是继发性脑损伤的最关键因素。PHE在前24小时增加了75%。PHE,最初几小时是线粒体衰竭引起的细胞毒性水肿,随后的5至7天内发展的是血管源性水肿,它在5~6天内达到峰值,并持续14天,可持续长达一个月 [9] [10]。尽管结果很严重,但没有有效的内科或外科疗法可用 [6]。管理PHE可能是改善脑出血患者继发性脑损伤的最佳目标 [10]。

格列本脲是磺酰脲类药物的一员,格列本脲作为一种治疗二型糖尿病的药丸已经使用了35年 [11]。其作为口服降糖药的治疗益处可追溯到1971年 [12]。1984年首次被美国食品和药物管理局批准,磺酰脲类药物通过抑制Sur1发挥作用。本综述的目的是突出格列本脲在治疗脑损伤中的潜在作用,并提出临床证据支持格列本脲在脑出血中的治疗潜力。

2. 主要内容

2.1. SUR1背景介绍及脑出血水肿产生机制

Sur1包括KATP (SUR1-KIR6.2、SUR2A-KIR6.2、SUR2B-KIR6.2、SUR2B-KIR6.1)和SUR1-TRPM4 [13]。用于2型糖尿病(DM II)患者通过抑制胰岛β细胞中的KATP (sur 1-kir 6.2)通道治疗,导致胰岛素释放增加 [14],Sur1-Trpm4通道被第一代和第二代磺脲类药物阻断。正常情况下,格列本脲不会在大脑中积累 [15]。然而,在缺血性和出血性损伤后,三磷酸腺苷的耗竭激活非选择性阳离子通道SUR1-TRPM4,使细胞去极化,并允许钠在细胞内流和钾外流,从而促进水肿的形成。SUR1-TRPM4与中风和TBI模型中的微血管功能障碍、水肿形成和延迟出血以及细胞死亡有关 [16] 对大脑的渗透性增强。脑缺血导致局部乳酸酸中毒和相对较低的酸碱度环境 [17]。格列本脲是一种弱酸,因此,在低酸碱度下,其脂溶性和穿透血脑屏障(BBB)的能力增强。在中枢神经系统出血的情况下,功能障碍的BBB增加了格列本脲在损伤部位组织中的被动吸收 [18]。随着局部血脑屏障的破坏,血浆外渗导致血管源性水肿,血管源性水肿携带高蛋白质结合药物格列本脲进入血管外空间。因此,相对低剂量的药物可用于在缺血性和出血性中风中获得良好的治疗效果 [18]。在心脏骤停下的全脑缺血 [19] [20],局灶性脑缺血 [21] [22],脊髓损伤 [23],创伤性颅脑损伤 [20],SAH [24],脑出血 [25],IVH [26],肝衰竭 [27],和过敏性脑脊髓炎 [28] 大量的神经系统疾病状态显示了该通道的上调。

一些临床前研究发现,格列本脲在缺血性脑卒中啮齿类动物模型中具有神经功能保护作用 [21],这些临床前实验已经为格列本脲在脑卒中临床试验奠定了基础。近年,有研究评估格列本脲对创伤性脑损伤 [29] 和脑卒中 [30] [31] 患者有良好治疗效果。因此,格列本脲治疗急性CNS损伤有一定的临床研究意义。针对导致病理渗透梯度改变的离子通道和转运蛋白损伤后发生代偿反应的分子机制的药物治疗是最有希望的治疗策略。重新使用抑制离子通道异常上调的药物如格列本脲(SUR1TRPM4)和重新建立离子通道生理调节的新型药物如ZT-a1可能是预防甚至逆转脑实质内液体积聚的有用药物 [32]。针对最近发现的途径,如阳离子–氯化物共转运体和SUR1-TRPM4,开发新药并重新利用目前使用的药物,将为多种颅内病变引起的脑水肿提供更有效的治疗和潜在的预防。

水肿是脑实质内水分的积聚,包括细胞毒性水肿、血管源性水肿和流体静力性水肿 [33]。离子梯度改变导致细胞(细胞毒性)水肿、离子性水肿,最终导致血管源性水肿 [33]。脑出血后周围组织受到刺激和压迫,缺血导致钠钾腺苷三磷酸酶(ATPase)转运失败,大量共转运蛋白和被动转运蛋白接管,导致神经元和神经胶质吸收渗透性活性的溶质 [34]。这导致星形胶质细胞最初通过渗透电解质吸收而肿胀,随后吸收水,细胞肿胀的源头是细胞内钠的积聚。多种离子转运蛋白被认为是电解质渗透摄取的介质,包括钠–钾–氯转运蛋白亚型1 (NKCC1) [35],磺酰脲受体1-瞬时受体电位美拉他汀4 (SUR1-TRPM4)通道 [36] 和钠–氢交换剂 [37]。这些转运蛋白被多种不同的生理状态和特征上调,包括创伤或缺血性损伤后细胞外钾的增加、酸碱度的改变、炎性细胞因子和谷氨酸盐 [38] [39]。这些转运蛋白的上调和随后的渗透调节质转移导致离子性水肿,导致脑肿胀。

2.2. 脑出血水肿治疗

治疗方法:1) 脑水肿和颅内高压的分级管理方法 尽管导致脑水肿和颅内高压的疾病各不相同,但一旦脑水肿风险,初始管理包括固定患者的气道和注意患者的定位,发现有包括将床头抬高到30度,以及将头部和颈部置于中线以最大化静脉血流出。为了最大限度地增加静脉血流出,重要的是尽量减少颈部周围的任何阻力,包括颈圈或颈内静脉导管,这将阻碍静脉血流出。此外,注意尽可能保持接近正常的生理状态是最重要的,包括正常血压、正常体温、食欲不振和正常睡眠 [33] [40]。2) 渗透疗法最常用的两种渗透剂是高渗盐水和甘露醇。高渗盐水有多种不同的浓度,从2%到23.4%不等。通常,3%或更多的溶液通过中心线注入,以减轻任何外周血管损伤的风险。高渗盐水的其他副作用酸中毒。用醋酸盐缓冲高渗盐水是一个重要的考虑因素 [41]。由于甘露醇促进利尿,应仔细考虑患者的容量状况。此外,应遵循渗透压间隙,因为急性肾损伤与大于20毫摩尔/千克的渗透压间隙有关。渗透压间隙比血清渗透压更能预测肾损伤 [42]。高渗盐水和甘露醇按照治疗目标进行治疗。有时,高渗盐水输注可用于治疗低钠血症引起的脑水肿。渗透疗法在治疗颅内压高方面是有效的 [43]。3) 去骨瓣减压术去骨瓣减压术可追溯到一个多世纪前。接受去骨瓣减压术的患者死亡的可能性较小,但更有可能在6个月时严重残疾或处于植物状态。12个月时,根据格拉斯哥评分量表,良好的预后在接受减压的患者中更常见 [44]。多项研究已经确定了多种离子转运体、通道和受体,它们在包括离子、细胞毒性和血管生成在内的所有阶段都有助于脑水肿形成。这些转运蛋白、通道和受体的拮抗作用有可能在水肿形成之初阻止水肿的形成。临床前和临床研究显示了非凡的前景和进步,尽管这些途径中的许多仍处于起步阶段。布美他尼是一种低浓度抑制NKCC1的袢利尿剂 [45]。创伤动物模型显示布美他尼减轻星形胶质细胞肿胀 [46]。黄芪甲苷抑制基质金属蛋白酶-9和水通道蛋白4的上调,导致脑含水量降低,神经功能改善,血脑屏障通透性降低 [47]。芬戈莫德是一种改变淋巴细胞迁移的鞘氨醇-1-磷酸受体调节剂。芬戈莫德也被证明可以减轻缺血性中风 [47] [48] 后的脑水肿。

2.3. SUR1在神经系统损伤中作用机制

SUR1被磺酰脲类药物格列本脲抑制,在美国通常被称为格列本脲,最初用于治疗可追溯到20世纪60年代的II型糖尿病。SUR1-TRPM4 [33] 通过三磷酸腺苷的耗竭激活非选择性阳离子通道SUR1-TRPM4,使细胞去极化,并允许钠向内流动和钾流出,从而促进水肿的形成。SUR1-TRPM4与中风和TBI模型中的微血管功能障碍、水肿形成和延迟出血以及坏死细胞死亡有关 [48]。水通道蛋白4的上调被认为是水肿消退的驱动因素 [49]。随着水通道蛋白4的上调,小胶质细胞的活化减少,脑实质的水清除增加。这有助于减少血脑屏障破坏,从而减少中性粒细胞浸润。因此,细胞因子和基质金属蛋白酶产生较少,基底膜和紧密连接保持不变。最终结果是血管源性水肿减少 [49]。水通道蛋白是一个在体内许多不同细胞上表达的水通道家族,其中最丰富的是在血管周围星形胶质细胞足突上表达的中枢神经系统水通道蛋白4 [50]。在炎症反应时,基质金属蛋白酶引起水通道蛋白破坏,导致血脑屏障破坏和水肿。此外,这些通道可能对血管源性和细胞毒性水肿产生不同的影响 [51]。对血管源性水肿的研究表明,水通道蛋白4缺乏的小鼠往往会增加脑水肿,临床症状更差。

Sur1-Trpm4介导的去极化对于通过非电压依赖性通道减少病理性钙内流非常重要,但如果不检查,通过这些通道的离子流会导致细胞毒性水肿和细胞死亡 [18] [52]。KATP介导的超极化对于通过电压依赖性通道减少钙内流非常重要,但过度时,会耗尽神经元中消耗ATP的代偿措施 [53],并减弱小胶质细胞对外部刺激的反应 [54]。神经元、星形胶质细胞、少突胶质细胞和微血管内皮细胞中的Sur1-Trpm4通道在局灶性缺血 [55] 和出血 [56] 后上调,可能是为了防止细胞内钙过度升高 [57] 和随后触发钙依赖性细胞死亡级联反应 [58]。然而,缺血和出血时ATP的极度耗竭可导致持续的通道激活,导致病理性钠、氯离子和水内流,提供了中枢神经系统中细胞毒性水肿和坏死(胀亡)细胞死亡的主要分子机制 [59]。虽然Sur1-Trpm4通道在缺血性和出血性CNS损伤中的病理参与已被证实,但最近的证据也支持脑KATP通道在促进神经胶质损伤中的潜在作用。在缺血状态下,ATP耗竭导致过度的神经元KATP介导的钾外流,这可能增加钙的电化学驱动力和随后的钙内流,钙是细胞死亡级联的关键调节因子 [53]。小胶质细胞KATP介导的钾外流。也可能导致膜电位的严重干扰,干扰小胶质细胞对周围神经化学环境的良好反应。事实上,最近的证据将缺血诱导的KATP通道激活与神经毒性小胶质细胞表型的发展联系起来 [53] [60]。值得注意的是,这些受Sur1调节的通道在缺血或出血开始后数小时内逐渐转录上调 [61]。关键的是,由于CNS损伤和Sur1上调之间经过数小时,因此存在一个非常有利的治疗时间窗,用于靶向和预防Sur1介导的CNS损伤。

2.4. 格列本脲的不良反应

SUR1的使用与心血管并发症和中风风险的增加相关,这是由于干扰心脏ATP敏感性钾通道导致心功能不全和心律失常 [62] 另外格列本脲的明显耐受性问题是低血糖 [62]。

2.5. 格列本脲的应用前景

Sur1-Trpm4通道在细胞毒性(细胞)水肿、坏死细胞死亡、微血管功能障碍、离子和血管源性水肿形成、继发性出血和神经炎症中起着关键作用。其他证据表明KATP在小胶质细胞反应性通道中起着关键作用。作为这些开创性进展的一部分,格列本脲已被证明对减少中枢神经系统损伤和改善缺血性和出血性卒中非致死性和致死性大鼠模型的预后非常有益。回顾性研究以及一项前瞻性二期临床研究表明,格列本脲在缺血性卒中治疗干预中具有很高的转化潜力。总之,这些研究促进了我们对缺血和出血性中枢神经系统损伤中Sur1的理解。格列本脲在两种破坏性中枢神经系统损伤的未来治疗中显示出巨大的前景,为目前治疗有限的疾病提供了急需的选择。

2.6. 格列本脲的临床前和临床研究

随着我们对脑血管病病理生理学的理解的增加,药物治疗正在发展为靶向的,潜在的分子机制 [63]。在动物模型和临床试验中,格列本脲在减轻组织肿胀和改善功能结果方面显示出前景。表1总结了这些试验的特点及试验结果。

Table 1. Summary of preclinical and clinical studies on glyburide in cerebrovascular diseases

表1. 格列本脲在脑血管病应用的临床前及临床研究总结

格列本脲生物背景:新型格列本脲类化合物的选择性通过集中作用于KATP和钙通道,以非突变、恒定和持久的机制刺激胰岛素分泌,并保护β细胞免于过度兴奋、功能障碍和细胞死亡,保证了恢复葡萄糖稳态的更高效率和安全性 [50]。

3. 讨论

在未来5年,我们希望正在进行的临床试验将显示格列本脲和可能的其他药物在治疗LHI脑水肿、TBI挫伤和各种其他中枢神经系统疾病状态方面的益处。除了在LHI和TBI进行的临床前和现在的临床试验中令人兴奋和信服的数据之外,在动物和人类研究中还展示了在缓解导致脑水肿的各种转运蛋白、通道和受体方面有开创性的工作。随着我们对脑水肿有了更深入的了解,重要的是思考脑水肿与受体或通道上调的时间关系,以便在病程中最适宜的时间给药。了解哪些受体、通道和转运蛋白在与特定疾病状态相关的脑水肿中上调,将允许靶向治疗干预。如前所述,这些实验拓宽了我们对潜在病理生理学的知识。考虑到对病理生理学的预期影响,可以通过各种受体、通道和转运蛋白的有效靶向,协同使用多种药物来减轻脑水肿的影响。尽管在未来几年中多种药物和新治疗靶点的协同使用具有令人兴奋的潜力,但我们必须首先集中精力对已经拥有最有说服力数据的药物进行持续的临床试验。

文章引用

李 娟,王 涛,师 宁,冯鑫慧. 格列本脲在脑出血水肿期的应用前景
Application Prospect of Glibenclamide in Cerebral Hemorrhage Edema[J]. 临床医学进展, 2021, 11(11): 5492-5500. https://doi.org/10.12677/ACM.2021.1111813

参考文献

  1. 1. Jacobson, S.M., MacAllister, T.W. and Geliebter, D.M. (2020) Found in Translation: The Rationale behind the Early Development of Glibenclamide in Large Hemispheric Infarction. Neuroscience Letters, 716, Article ID: 134672. https://doi.org/10.1016/j.neulet.2019.134672

  2. 2. van Asch, C.J., Luitse, M.J., Rinkel, G.J., van der Tweel, I., Algra, A. and Klijn, C.J. (2010) Incidence, Case Fatality, and Functional Outcome of Intracerebral Haemorrhage over Time, According to Age, Sex, and Ethnic Origin: A Systematic Review and Meta-Analysis. Lancet Neurology, 9, 167-176. https://doi.org/10.1016/S1474-4422(09)70340-0

  3. 3. Tsai, C.F., Thomas, B. and Sudlow, C.L. (2013) Epidemiology of Stroke and Its Subtypes in Chinese vs White Populations: A Systematic Review. Neurology, 81, 264-272. https://doi.org/10.1212/WNL.0b013e31829bfde3

  4. 4. An, S.J., Kim, T.J. and Yoon, B.W. (2017) Epidemiology, Risk Factors, and Clinical Features of Intracerebral Hemorrhage: An Update. Journal of Stroke, 19, 3-10. https://doi.org/10.5853/jos.2016.00864

  5. 5. Ziai, W.C. (2013) Hematology and Inflammatory Signaling of Intracerebral Hemorrhage. Stroke, 44, S74-S78. https://doi.org/10.1161/STROKEAHA.111.000662

  6. 6. Keep, R.F., Hua, Y. and Xi, G.H. (2012) Intracerebral Haemorrhage: Echanisms of Injury and Therapeutic Targets. Lancet Neurology, 11, 720-731. https://doi.org/10.1016/S1474-4422(12)70104-7

  7. 7. Li, G., Fan, R.-M., Chen, J.-L., Wang, C.-M., Zeng, Y.-C., et al. (2014) Neuroprotective Effects of Argatroban and C5a Receptor Antagonist (PMX53) Following Intracerebral Haemorrhage. Clinical and Experimental Immunology, 175, 285-295.

  8. 8. Lee, S.H., Park, H.K., Ryu, W.S., Lee, J.S., Bae, H.J., Han, M.K., et al. (2013) Effects of Celecoxib on Hematoma and Edema Volumes in Primary Intracerebral Hemorrhage: A Multicenter Randomized Controlled Trial. European Journal of Neurology, 20, 1161-1169. https://doi.org/10.1111/ene.12140

  9. 9. Venkatasubramanian, C., Mlynash, M., Finley-Caulfield, A., Eyngorn, I., Kalimuthu, R., Snider, R.W., et al. (2011) Natural History of Perihematomal Edema after Intracerebral Hemorrhage Measured by Serial Magnetic Resonance Imaging. Stroke, 42, 73-80. https://doi.org/10.1161/STROKEAHA.110.590646

  10. 10. Murthy, S.B., Moradiya, Y., Dawson, J., et al. (2015) Perihematomal Edema and Functional Outcomes in Intracerebral Hemorrhage: Influence of Hematoma Volume and Location. Stroke, 46, 3088-3092. https://doi.org/10.1161/STROKEAHA.115.010054

  11. 11. Grunwald, Z., Beslow, L.A., Urday, S., Vashkevich, A., Ayres, A., Greenberg, S.M., et al. (2017) Perihematomal Edema Expansion Rates and Patient Outcomes Indeep and Lobar Intracerebral Hemorrhage. Neurocritical Care, 26, 205-212. https://doi.org/10.1007/s12028-016-0321-3

  12. 12. Marble, A. (1971) Glibenclamide, a New Sulphonylurea: Whither Oral Hypoglycaemic Agents? Drugs, 1, 109-115. https://doi.org/10.2165/00003495-197101020-00001

  13. 13. Woo, S.K., Tsymbalyuk, N., Tsymbalyuk, O., Ivanova, S., Gerzanich, V. and Simard, J.M. (2020) SUR1-TRPM4 Channels, Not KATP, Mediate Brain Swelling Following Cerebral Ischemia. Neuroscience Letters, 718, Article ID: 134729. https://doi.org/10.1016/j.neulet.2019.134729

  14. 14. Kramer, W., Muller, G., Girbig, F., Gutjahr, U., Kowalewski, S., Hartz, D. and Summ, H.D. (1995) The Molecular Interaction of Sulfonylureas with β-Cell ATP-Sensitive K+-Channels. Diabetes Diabetes Research and Clinical Practice, 28, S67-S80. https://doi.org/10.1016/0168-8227(95)01076-P

  15. 15. Tomiyama, Y., Brian Jr., J.E. and Todd, M.M. (1999) Cerebral Blood Flow during Hemodilution and Hypoxia in Rats: Role of ATP-Sensitive Potassium Channels. Stroke, 30, 1942-1947. https://doi.org/10.1161/01.STR.30.9.1942

  16. 16. Chen, M. and Simard, J.M (2001) Cell Swelling and a Nonselective Cation Channel Regulated by Nternal Ca2+ and ATP in Native Reactive Astrocytes from Adult Rat Brain. Journal of Neuroscience, 21, 6512-6521. https://doi.org/10.1523/JNEUROSCI.21-17-06512.2001

  17. 17. Nedergaard, M., Kraig, R.P., Tanabe, J. and Pulsinelli, W.A. (1991) Dynamics of Interstitial and Intracellular pH in Evolving Brain Infarct. American Journal of Physiology, 260, R581-R588. https://doi.org/10.1038/jcbfm.2012.91

  18. 18. Simard, J.M., Woo, S.K., Wartzbauer, G.T. and Gerzanich, V. (2012) Sulfonylurea Receptor 1 in Central Nervous System Injury: A Focused Review. Journal of Cerebral Blood Flow & Metabolism, 32, 1699-1717. https://doi.org/10.1038/jcbfm.2012.91

  19. 19. Huang, K., Wang, Z., Gu, Y., Ji, Z., Lin, Z., Wang, S., et al. (2018) Glibenclamide Prevents Water Diffusion Abnormality in the Brain After Cardiac Arrest in Rats. Neurocritical Care, 29, 128-135. https://doi.org/10.1007/s12028-018-0505-0

  20. 20. Jha, R.M., Mondello, S., Bramlett, H.M., Edward Dixon, C., Shear, D.A., Dalton Dietrich, W., et al. (2021) Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 38, 628-645. https://doi.org/10.1089/neu.2020.7421

  21. 21. Simard, J.M., Yurovsky, V., Tsymbalyuk, N., Melnichenko, L., Ivanova, S. and Gerzanich, V. (2009) Protective Effect of Delayed Treatment with Low-Dose Glibenclamide in Three Models of Ischemic Stroke. Stroke, 40, 604-609. https://doi.org/10.1161/STROKEAHA.108.522409

  22. 22. Wali, B., Ishrat, T., Atif, F., Hua, F., Stein, D.G. and Sayeed, I. (2012) Glibenclamide Administration Attenuates Infarct Volume, Hemispheric Swelling, and Functional Impairments following Permanent Focal Cerebral Ischemia in Rats. Stroke Research and Treatment, 2012, Article ID: 460909. https://doi.org/10.1155/2012/460909

  23. 23. Simard, J.M., Tsymbalyuk, O., Ivanov, A., Ivanova, S., Bhatta, S., Geng, Z., et al. (2007) Endothelial Sulfonylurea Receptor 1-Regulated NC Ca-ATP Channels Mediate Progressive Hemorrhagic Necrosis Following Spinal Cord Injury. Journal of Clinical Investigation, 117, 2105-2113. https://doi.org/10.1172/JCI32041

  24. 24. Simard, J.M., Geng, Z., Woo, S.K., Ivanova, S., Tosun, C., Melnichenko, L., et al. (2009) Glibenclamide Reduces Inflammation, Vasogenic Edema, and Caspase-3 Activation after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 29, 317-330. https://doi.org/10.1038/jcbfm.2008.120

  25. 25. Jiang, B., Li, L., Chen, Q., Tao, Y., Yang, L., Zhang, B., et al. (2017) Role of Glibenclamide in Brain Injury after Intracerebral Hemorrhage. Translational Stroke Research, 8, 183-193. https://doi.org/10.1007/s12975-016-0506-2

  26. 26. Simard, P.F., Tosun, C., Melnichenko, L., Ivanova, S., Gerzanich, V. and Marc Simard, J. (2011) Inflammation of the Choroid Plexus and Ependymal Layer of the Ventricle Following Intraventricular Hemorrhage. Translational Stroke Research, 2, 227-231. https://doi.org/10.1007/s12975-011-0070-8

  27. 27. Jayakumar, A.R., Valdes, V., Tong, X.Y., Shamaladevi, N., Gonzalez, W. and Norenberg, M.D. (2014) Sulfonylurea Receptor 1 Contributes to the Astrocyte Swelling and Brain Edema in Acute Liver Failure. Translational Stroke Research, 5, 28-37. https://doi.org/10.1007/s12975-014-0328-z

  28. 28. Schattling, B., Steinbach, K., Thies, E., Kruse, M., Menigoz, A., Ufer, F., et al. (2012) TRPM4 Cation Channel Mediates Axonal and Neuronal Degeneration in Experimental Immune Encephalomyelitis and Multiple Sclerosis. Nature Medicine, 18, 1805-1811. https://doi.org/10.1038/nm.3015

  29. 29. Simard, J.M., Popovich, P.G., Tsymbalyuk, O. and Gerzanich, V. (2012) Spinal Cord Injury with Unilateral versus Bilateral Primary Hemorrhage: Effects of Glibenclamide. Experimental Neurology, 233, 829-835. https://doi.org/10.1016/j.expneurol.2011.11.048

  30. 30. Sheth, K.N. and Kimberly, W.T. (2020) Brain Edema Takes Center Stage. Neuroscience Letters, 736, 135266. https://doi.org/10.1016/j.neulet.2020.135266

  31. 31. Sheth, K.N., Elm, J.J., Beslow, L.A., Sze, G.K. and Taylor Kimberly, W. (2015) Glyburide Advantage in Malignant Edema and Stroke (GAMES-RP) Trial: Rationale and Design. Neurocritical Care, 24, 132-139. https://doi.org/10.1007/s12028-015-0189-7

  32. 32. Robert, S.M., Reeves, B.C., Alper, S.L., Zhang, J. and Kahle, K.T. (2020) New Drugs on the Horizon for Cerebral Edema: What’s in the Clinical Development Pipeline? Expert Opinion on Investigational Drugs, 29, 1099-1105. https://doi.org/10.1080/13543784.2020.1813715

  33. 33. Pergakis, M., Badjatia, N. and Simard, J.M. (2021) An Update on the Pharmacological Management and Prevention of Cerebral Edema: Current Therapeutic Strategies. Expert Opinion on Pharmacotherapy, 22, 1025-1037. https://doi.org/10.1080/14656566.2021.1876663

  34. 34. Simard, J.M., Kent, T.A., Chen, M. and Tarasov, K.V, (2007) Brain Oedema in Focal Ischaemia: Molecular Pathophysiology and Theoretical Implications. The Lancet Neurology, 6, 258-268. https://doi.org/10.1016/S1474-4422(07)70055-8

  35. 35. Unterberg, A.W., Stover, J., Kress, B. and Kiening, K.L. (2004) Edema and Brain Trauma. Neuroscience, 129, 1021-1209. https://doi.org/10.1016/j.neuroscience.2004.06.046

  36. 36. Beck, J., Lenart, B., Kintner, D.B. and Sun, D. (2003) Na-K-Cl Cotransporter Contributes to Glutamate-Mediated Excitotoxicity. Journal of Neuroscience, 23, 5061-5068. https://doi.org/10.1523/JNEUROSCI.23-12-05061.2003

  37. 37. Chen, M., Dong, Y. and Simard, J.M. (2003) Functional Coupling between Sulfonylurea Receptor Type 1 and a Nonselective Cation Channel in Reactive Astrocytes from Adult Rat Brain. Journal of Neuroscience, 23, 8568-8577. https://doi.org/10.1523/JNEUROSCI.23-24-08568.2003

  38. 38. Jakubovicz, D.E. and Klip, A. (1989) Lactic Acid-Induced Swelling in C6 Glial Cells via Na+/H+ Exchange. Brain Research, 485, 215-224. https://doi.org/10.1016/0006-8993(89)90564-7

  39. 39. Walct, B.P., Kahle, K.T. and Simard, J.M. (2012) Novel Treatment Targets for Cerebral Edema. Neurotherapeutics, 9, 65-72. https://doi.org/10.1007/s13311-011-0087-4

  40. 40. Koenig, M.A. (2018) Cerebral Edema and Elevated Intracranial Pressure. Continuum, 24, 1588-1602. https://doi.org/10.1212/CON.0000000000000665

  41. 41. Riha, H.M., Erdman, M.J., Vandigo, J.E., Kimmons, L.A., Goyal, N., Davidson, K.E., et al. (2017) Impact of Moderate Hyperchloremia on Clinical Outcomes in Intracerebral Hemorrhage Patients Treated with Continuous Infusioypertonic Saline: A Pilot Study. Critical Care Medicine, 45, e947-e953. https://doi.org/10.1097/CCM.0000000000002522

  42. 42. García-Morales, E.J., Cariappa, R., Parvin, C.A., Scott, M.G. and Diringer, M. (2004) Osmole Gap in Neurologic-Neurosurgical Intensive Care Unit: Its Normal Value, Calculation, and Relationship with Mannitol Serum Concentrations. Critical Care Medicine, 32, 986-991. https://doi.org/10.1097/01.CCM.0000120057.04528.60

  43. 43. Cook, A.M., Morgan Jones, G., Hawryluk, G.W.J., Mailloux, P., McLaughlin, D., Papangelou, A., et al. (2020) Guidelines for the Acute Treatment of Cerebral Edema in Neurocritical Care Patients. Neurocritical Care, 32, 647-666. https://doi.org/10.1007/s12028-020-00959-7

  44. 44. Carney, N., Totten, A.M., O’Reilly, C., Ullman, J.S., Hawryluk, G.W.J., Bell, M.J., et al. (2017) Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery, 80, 6-15. https://doi.org/10.1227/NEU.0000000000001432

  45. 45. Frederico, M.J.S., Castro, A.J.G., Menegaz, D., De Bernardis Murat, C., Mendes, C.P., Mascarello, A., et al. (2017) Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion. Current Drug Targets, 18, 641-650. https://doi.org/10.2174/1389450117666160615084752

  46. 46. Jayakumar, A.R., Panickar, K.S., Curtis, K.M., Tong, X.Y., Moriyama, M. and Norenberg, M.D. (2011) Na-K-Cl Cotransporter-1 Ithe Mechanism of Cell swelling in Cultured Astrocytes after Fluid Percussion Injury. Journal of Neurochemistry, 117, 437-448. https://doi.org/10.1111/j.1471-4159.2011.07211.x

  47. 47. Li, M., Ma, R.N., Li, L.H., Qu, Y.Z. and Gao, G.D. (2013) Astragaloside IV Reduces Cerebral Edema Post-Ischemia/Reperfusion Correlating the Suppression of MMP-9 and AQP4. European Journal of Pharmacology, 715, 189-195. https://doi.org/10.1016/j.ejphar.2013.05.022

  48. 48. Chen, M. and Simard, J.M. (2001) Cell Swelling and a Nonselective Cation Channel Regulated By Internal Ca2+ and ATP in Native Reactive Astrocytes from Adult Rat Brain. Journal of Neuroscience, 21, 6512-6521. https://doi.org/10.1523/JNEUROSCI.21-17-06512.2001

  49. 49. Fukuda, A.M. and Badaut, J. (2012) Aquaporin 4: A Player in Cerebral Edema and Neuroinflammation. Journal of Neuroinflammation, 9, Article No. 279. https://doi.org/10.1186/1742-2094-9-279

  50. 50. Badaut, J., Lasbennes, F., Magistretti, P.J. and Regli, L. (2002) Aquaporins in Brain: Distribution, Physiology, and Pathophysiology. Journal of Cerebral Blood Flow & Metabolism, 22, 367-378. https://doi.org/10.1097/00004647-200204000-00001

  51. 51. Michinaga, S. and Koyama, Y. (2015) Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs. International Journal of Molecular Sciences, 16, 9949-9975. https://doi.org/10.3390/ijms16059949

  52. 52. Simard, J.M., Woo, S.K. and Gerzanich, V. (2012) Transient Receptor Potential Melastatin 4 and Cell Death. Pflügers Archiv, 464, 573-582. https://doi.org/10.1007/s00424-012-1166-z

  53. 53. Nistico, R., Piccirilli, S., Sebastianelli, L., Nistico, G., Bernardi, G. and Mercuri, N.B. (2007) The Blockade of K+-ATP Channels Has Neuroprotective Effects in an in Vitro Model of Brain Ischemia. International Review of Neurobiology, 82, 383-395. https://doi.org/10.1016/S0074-7742(07)82021-6

  54. 54. Ortega, F.J., Gimeno-Bayon, J, Espinosa-Parrilla, J.F, Carrasco, J.L, Batlle, M., Pugliese, M., Mahy, N. and Rodriguez, M.J. (2012) ATP-Dependent Potassium Channel Blockade Strengthens Microglial Neuroprotection after Hypoxia-Ischemia in Rats. Experimental Neurology, 235, 282-296. https://doi.org/10.1016/j.expneurol.2012.02.010

  55. 55. Mehta, R.I., Ivanova, S., Tosun, C., Castellani, R.J., Gerzanich, V. and Simard, J.M. (2013) Sulfonylurea Receptor 1 Expression in Human Cerebral Infarcts. Journal of Neuropathology & Experimental Neurology, 72, 871-883. https://doi.org/10.1097/NEN.0b013e3182a32e40

  56. 56. Tosun, C., Kurland, D.B., Mehta, R., Castellani, R.J., de Jong, J.L., Kwon, M.S., Woo, S.K., Gerzanich, V. and Simard, J.M. (2013) Inhibition of the Sur1-Trpm4 Channel Reduces Neuroinflammation and Cognitive Impairment in Subarachnoid Hemorrhage. Stroke, 44, 3522-3528. https://doi.org/10.1161/STROKEAHA.113.002904

  57. 57. Woo, S.K., Kwon, M.S., Ivanov, A., Gerzanich, V. and Simard, J.M. (2013) The Sulfonylurea Receptor 1 (Sur1)-Transient Receptor Potential Melastatin 4 (Trpm4) Channel. Journal of Biological Chemistry, 288, 3655-3667. https://doi.org/10.1074/jbc.M112.428219

  58. 58. Bano, D. and Nicotera, P. (2007) Ca2+ Signals and Neuronal Death in Brain Ischemia. Stroke, 38, 674-676. https://doi.org/10.1161/01.STR.0000256294.46009.29

  59. 59. Gerzanich, V., Woo, S.K., Vennekens, R., Tsymbalyuk, O., Ivanova, S., Ivanov, A., Geng, Z., Chen, Z., Nilius, B., Flockerzi, V., et al. (2009) De Novo Expression of Trpm4 Initiates Secondary Hemorrhage in Spinal Cord Injury. Nature Medicine, 15, 185-191. https://doi.org/10.1038/nm.1899

  60. 60. Ortega, F.J., Jolkkonen, J., Mahy, N. and Rodriguez, M.J. (2013) Glibenclamide Enhances Neurogenesis and Improves Long-Term Functional Recovery after Transient Focal Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 33, 356-364. https://doi.org/10.1038/jcbfm.2012.166

  61. 61. Woo, S.K., Kwon, M.S., Geng, Z., Chen, Z., Ivanov, A., Bhatta, S., Gerzanich, V. and Simard, J.M. (2012) Sequential Activation of Hypoxia-Inducible Factor 1 and Specificity Protein 1 Is Required for Hypoxia-Induced Transcriptional Stimulation of Abcc8. Journal of Cerebral Blood Flow & Metabolism, 32, 525-536. https://doi.org/10.1038/jcbfm.2011.159

  62. 62. Monami, M., Genovese, S. and Mannucci, E. (2013) Cardiovascular Safety of Sulfonylureas: A Meta-Analysis of Andomized Clinical Trials. Diabetes, Obesity and Metabolism, 15, 938-953. https://doi.org/10.1111/dom.12116

  63. 63. 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2019) [J]. 中华神经科杂志, 2019, 52(12): 994-1005. https://doi.org/10.3760/cma.j.issn.1006-7876.2019.12.003

期刊菜单