Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65374 , 8 pages
10.12677/ACM.2023.1351093

Fabry病的临床诊断及治疗进展

陈梦珂1,石晓梦2,3,韩玲玲1,周谦1,邵乐平3*

1山东第一医科大学(山东省医学科学院)研究生部,山东 济南

2青岛大学医学部,山东 青岛

3青岛大学附属青岛市市立医院肾内科,山东 青岛

收稿日期:2023年4月17日;录用日期:2023年5月9日;发布日期:2023年5月17日

摘要

Fabry病(FD)是一种X连锁的隐性单基因遗传病,继发于GLA基因突变,导致α半乳糖苷酶A (α-Gal A)活力部分或全部消失,引起其代谢底物酰基鞘氨醇三己糖苷(Gb3)不能被及时降解,积聚在各个器官的不同类型细胞的溶酶体中,并可能导致不同的临床情况。FD症状出现在儿童时期,包括肢端感觉异常、冷热不耐受和胃肠道症状,如恶心、呕吐、腹痛和神经性疼痛。随后,与器官进行性损害相关的症状出现,如血管角化瘤、涡状角膜混浊、左室肥厚、心肌纤维化、蛋白尿和肾功能不全。肾功能不全是FD的主要死亡原因。除了家族病史外,诊断的金标准是基因分析寻找突变。确诊后患者及其家人应该接受遗传咨询。目前的治疗主要是通过酶替代疗法避免或消除Gb3的沉积。一旦确诊应立即开始治疗,这可能会改变疾病的预后,本文将从FD的流行病学现状、致病机制、临床表现、诊断标准、治疗几个方面进行阐述。

关键词

Fabry病,致病机制,临床表现,诊断,治疗

Clinical Diagnosis and Treatment Progress of Fabry Disease

Mengke Chen1, Xiaomeng Shi2,3, Lingling Han1, Qian Zhou1, Leping Shao3*

1Graduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan Shandong

2Qingdao Medical College, Qingdao University, Qingdao Shandong

3Department of Nephrology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao Shandong

Received: Apr. 17th, 2023; accepted: May 9th, 2023; published: May 17th, 2023

ABSTRACT

Fabry disease (FD) is an X-linked recessive monogenic disease, secondary to GLA gene mutation, which leads to partial or complete disappearance of α-galactosidase A (α-Gal A) activity, causing its metabolic substrate acyl sphingosine trihexoside (Gb3) to be unable to be degraded in time and accumulated in lysosomes of different types of cells in various organs, which may lead to different clinical situations. Symptoms of FD occur in childhood and include paresthesia, cold and heat intolerance, and gastrointestinal symptoms such as nausea, vomiting, abdominal pain, and neuropathic pain. Subsequently, symptoms associated with progressive organ damage developed, such as angiokeratoma, opacity of the cornea, left ventricular hypertrophy, myocardial fibrosis, proteinuria, and renal insufficiency. Renal insufficiency is the leading cause of death in FD. In addition to the family history, the gold standard of diagnosis is genetic analysis looking for mutations. Genetic counseling should be provided to the patient and his family upon diagnosis. The current treatment is mainly to avoid or eliminate the deposition of Gb3 by enzyme replacement therapy. Once diagnosed, treatment should be started immediately, which may change the prognosis of the disease. This article will describe the current epidemiological situation, pathogenic mechanism, clinical manifestations, diagnostic criteria, and treatment of FD.

Keywords:Fabry Disease, Pathogenic Mechanisms, Clinical Manifestations, Diagnosis, Treatment

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 流行病学

据估计,Fabry病在男性中的患病率从1:8454到1:117,000不等,在各人种及民族中均有发现,到目前为止还没有发现种族偏向 [1] 。值得注意的是,最近对新生儿的研究发现新生儿发病率很高,从意大利的1:3100到台湾的1:1550不等。因此,这种疾病很有可能存在漏诊 [2] 。

2. 致病机制

FD是一种X连锁遗传性溶酶体脂质贮积病,继发于α半乳糖苷酶A (α-Gal A)活力部分或全部消失,当酶活性低于30%时,该酶的代谢底物酰基鞘氨醇三己糖苷(Gb3)不能被及时降解,积聚在血管内皮细胞和平滑肌细胞,引起血管闭塞和缺血 [3] 。Gb3它也聚集在自主神经节、肾组织(肾小球、肾小管和间质细胞)、心肌细胞、角膜和皮肤的内皮细胞中 [4] 。细胞和组织中Gb3的积累与残留的α-Gal A活性呈负相关 [5] 。残留酶活性非常低(<3%)的患者有更严重的经典型FD,而残留酶活性在3%到30%之间的患者更可能有较轻或起病晚的表型。大多数致病性GLA变异是私有的,只发生在一个或几个家系中。

编码α-Gal A的基因(GLA)定位于X染色体的长臂(Xq22.1区域) [6] 。作为一种X连锁遗传疾病,男性只会将FD遗传给他们的女儿,杂合子女性有一半的机会将Fabry基因突变传递给她们的女儿和儿子 [7] [8] 。现已发现一千多种突变与FD相关,已知一些突变与经典型FD有关,另一些(主要是错义突变)与较轻的晚发性表型有关。大多数致病性GLA变异有家族特异性,只发生在一个或几个家系中。然而,表型的严重程度在家系内是不同的,可能与基因相互作用、表观遗传学和随机性引起的表型变异有关,有些基因涉及调节基因表达过程的某一个环节,突变必然影响其他基因;有些基因的产物是一个信号通路上游分子,突变就会影响下游基因的表达。

3. 临床表现

根据临床表现和血浆α-Gal A水平,Fabry病患者可分为经典型和变异型(迟发性)。

经典型法布里综合征患者的血浆α-Gal A活性低于正常水平的1%,通常在童年时出现疼痛、发烧、多汗、疲劳和冷热不耐受。然而,这些症状往往在成年后器官系统受损上述症状加重后才引起患者重视。一般来说,疾病的严重程度与血浆中该酶的活性呈负相关,大多数经典型FD患者为男性,但女性也可表现为经典型。杂合子女性患者血浆α-Gal A活性为0%~100%。被认为是无症状的携带者的患者实际上可能会因为X染色体的失活而从轻症发展为重症。最近一项针对女性携带者的研究发现,60名女性中有20名有明显的疾病表现,包括17名患者有短暂性脑缺血发作或脑血管病变病史 [9] 。

变异型是血浆α-Gal A活性部分下降的患者,患者很少会表现出经典型FD的标志性症状如血管瘤、听力损伤、肢端感觉异常、角膜混浊和少汗等早期表现且发病年龄较晚,症状局限在一个器官系统,往往限于心脏或肾脏受累,可能仅有单一器官系统受累表现 [10] 。

3.1. 皮肤受累,血管角质瘤和汗腺分泌障碍

Fabry病中的皮肤病变称为血管角质瘤,现被认为是这种疾病的特征性病变,表现为红紫色斑丘疹,通常分布在肚脐和膝盖之间,它们的大小从针尖到几毫米不等,并且随着年龄的增长其数量和大小会增加 [11] [12] 。FD的另一个典型特征是汗腺分泌障碍(少汗或多汗)。大多数患者表现为少汗或无汗,少数表现为多汗,多汗症可导致不明原因的高热和运动耐力差 [11] [13] 。现阶段已有多汗症病例的报告 [14] 。

3.2. 肾脏损伤

肾衰竭是FD患者死亡的主要原因 [15] 。FD的主要特征是蛋白尿和肾功能异常(肾小球滤过率降低),最常见的症状是蛋白尿,此外,患者还可发展为终末期肾病(ESKD) [16] 。

肾脏受累通常始于微量白蛋白尿,紧随其后的是二到三十年的蛋白尿。其进展类似于糖尿病肾病,并会加速慢性肾脏疾病的进展,它通常会演变为ESKD。一般来说,肾脏疾病的严重程度与残留酶活性有关 [16] [17] 。在之前的一项研究中,当酶活性低于1%时,肾脏疾病的诊断年龄为22岁,当酶活性在1%~12%之间时,肾脏疾病的诊断年龄为47岁 [17] 。

3.3. 心脏损伤

心脏受累是常见的,在半合子患者中受累更为严重。中性鞘糖脂在心肌细胞内沉积可导致PR间期缩短、房室传导阻滞、室上性心律失常和室性心律失常等传导异常。心肌缺血大多是由于冠状动脉内皮细胞功能障碍和肥厚心肌需氧量增加所致 [18] 。导致瓣膜异常的瓣膜纤维化出现频率较高,但心脏受累程度一般较轻,临床意义不大。用于评估心功能的诊断方式有超声心动图和磁共振成像 [19] [20] 。

3.4. 脑血管损伤

脑血管表现包括中风和短暂性脑缺血发作(TIA),但也包括慢性脑白质高信号、基底动脉扩张症和认知障碍。中风可出现在在任何年龄段,女性的发病率为7%~32%,男性的发病率为11%~48%,大多(87%)是缺血性的,但也可以是出血性的,在青年出现中风的患者中约有1%发现FD [21] 。

心房颤动在这一人群中较为常见并且这增加了中风的风险。研究表明,在这些患者中,特定的Fabry评分比通常的CHA2DS2-VASc评分更能识别中风的风险。中风或短暂性脑缺血发作的预测因素是中风或短暂性脑缺血发作病史、血管角化瘤的存在、肾功能障碍、左心室肥厚和整体收缩功能障碍 [22] 。

3.5. 眼部受累

涡状角膜混浊、血管迂曲、白内障和结膜淋巴管扩张是FD的眼科表现 [23] 。角膜混浊是最常见和最早出现的眼部表现,可通过裂隙灯检查来诊断,经典型FD的患病率高达70%,迟发型Fabry病的患病率为30% [24] 。其他并发症如后囊白内障、干眼综合征或结膜淋巴管扩张也可能发生 [25] 。

3.6. 听力异常

Fabry病可导致进行性或突发性听觉异常(18%~55%的患者)。继发于耳蜗、耳蜗后、听血管、脑干、外周或中枢神经系统受累。耳鸣也很常见(17%~53%的患者),三分之一的患者会出现眩晕症状 [26] 。

3.7. 骨骼表现

Fabry病是早产性骨量减少和骨质疏松症的一种原因,患病率从50%到87% [27] 。

3.8. 消化系统损害

患者可出现反复的胃肠道症状,如腹痛腹泻、恶心呕吐,胃肠道吸收不良和胀气等。

4. 诊断

4.1. 血浆检测

无论男性还是女性,α-Gal A活性测定都是诊断的第一步。它可以在白细胞(金标准)和血浆中测量 [28] 。经典型FD男性患者的α-Gal A活性小于等于酶活性正常值的3%,变异型FD男性患者α-Gal A活性大于酶活性正常值的3%,但基本低于正常值的30%,基本可以诊断,但是酶活性检测不能作为女性的诊断依据。gb3最早可在尿液中检测到,在血浆中可检测到它的特异性代谢产物三己糖基神经酰胺(lyso-gb3)。Gb3或lyso-Gb3水平通常与FD的严重程度正相关,并且血浆 lyso-Gb3 水平在男性中的相关性高于女性。迟发型FD患者的血浆Gb3和lyso-Gb3水平低于经典型FD患者 [29] 。这些标记物在随访中可用于评估治疗反应。

4.2. 组织活检

肾组织活检有助于Fabry病的辅助诊断,对评估不可逆性损害(肾小球硬化、肾小管萎缩、间质纤维化、动脉硬化)也很有用,但并不是诊断FD所必需的 [30] 。光镜下可见肾小球脏层上皮细胞增大并出现空泡化电镜下超微结构可见“髓样小体”沉积在足细胞、系膜细胞、肾小管上皮细胞及小动脉,其中电镜下观察到的“髓样小体”对FD的辅助诊断非常重要 [30] [31] [32] 。然而,“髓样小体”的存在不足以诊断FD,还需要用分光光度技术对Gb3进行测量。心内膜心肌活检对于心脏变异型或未知变异型的患者可能是必要的。

4.3. 基因测定

GLA基因检测是诊断FD的金标准,常见的突变类型有错义突变、无义突变以及缺失、插入和移码突变等。相同的GLA基因突变也可能出现表型变异,GLA基因突变可表现为经典型FD、迟发型FD,也可表现为多态性表型和未知表型 [33] 。除FD患者外还需要对家庭成员进行遗传检测来检测家庭成员来识别受影响的人。患有FD的患者如果检测出酶活性低,但未发现外显子突变,应进行内含子突变的评估。

4.4. 筛查

一旦患者FD得到确诊,患者及其家人应该接受遗传咨询,遗传咨询有助于早期诊断 [34] 。此外,遗传咨询可以告知患者其后代遗传疾病的风险。纯合子父亲的所有女儿都会遗传这种疾病,因为她们会从有突变的父亲那里继承X染色体;儿子不会遗传该病,因为他们只会从父亲那里得到Y染色体。携带突变的妇女有一半的孩子会受到影响,因为她有一个正常的X染色体和一个带突变的X染色体。

5. 治疗

5.1. 酶替代疗法

在2000年推行的重组人α-Gal A的酶替代疗法是Fabry病的一种特殊疗法,它为这种进行性疾病的患者提供了一种酶的外源性来源 [35] 。多中心、双盲安慰剂对照研究表明,重组人α-Gal A治疗可清除肾脏、心脏和皮肤中的微血管内皮细胞沉积 [36] 。重组人α-Gal A一般每2周输注1次,剂量为1 mg/kg,但不同适应症的确切剂量和疗程尚不完全清楚剂量。

输液反应包括心动过速、高血压、咽喉发紧、胸痛胸闷、呼吸困难、发热、寒战、僵硬、腹痛、瘙痒、麻疹、恶心、呕吐、嘴唇或耳朵浮肿、皮疹、低血压、肌肉疼痛和头痛。报道过的严重反应包括中风、疼痛、共济失调、心动过缓、心律失常、心脏骤停、心输出量减少、眩晕、声音减退和肾病综合征 [37] 。建议使用退烧药进行预处理。减慢输液速度可避免过敏反应,如果发生过敏反应,可以使用抗组胺药或类固醇药物。

5.2. 对症治疗

患者需要改变生活方式,包括规避疼痛刺激,戒烟控制对血管的影响,以及低盐饮食辅助控制血压。对神经性疼痛的控制–推荐的药物有二苯海因、卡马西平、加巴喷丁和阿片类药物。应避免使用非甾体止痛药,因为它对疼痛的控制力很差,而且肾毒性的风险很大 [38] 。用血管紧张素II受体拮抗剂(ARB)控制蛋白尿,抗血小板药物用于治疗反复发生的血栓事件 [39] 。

5.3. 心脏损害的治疗

对于Fabry病患者的心脏受累,应在心肌纤维化进展之前开始施行酶替代治疗,以改善心肌形态、功能和收缩能力。酶替代疗法对左心室肥厚没有显著效果 [40] [41] 。

5.4. 肾脏损害的治疗

对FD患者的肾脏损害可通过检测蛋白尿、检测肾小球滤过率评估肾功能以及进行肾活检以确认诊断和了解肾脏损害程度来评估其肾脏损害 [42] [43] 。控制高血压首选血管紧张素拮抗剂治疗。

FD的早期诊断非常重要,因为ERT (酶替代疗法)通过减少肾脏中糖脂沉积和改善肾功能来阻止肾脏进一步恶化,在改善肾功能方面作用显著。当患者肾功能衰竭进展至终末期或患者进行维持性血液透析无高风险因素时,FD患者可以进行肾移植。

5.5. 中枢神经系统疾病的治疗

对神经性疼痛给予对症治疗,对复发的血栓性中风使用抗血小板药物,目前ERT还未被证明对FD继发的中枢神经系统疾病是有益的。

5.6. 基因治疗

在过去的几年里,对于FD治疗加大了基因治疗的力度。在早期临床I/II期试验中,已对不同病毒载体进行了检测,并已对第一批FD患者进行了治疗。目前的方法包括重新给予慢病毒转染的造血干细胞,腺病毒相关基因治疗和基于mini-RNA的治疗。到目前为止,第一批可用的报告显示,该治疗方法总体上是有效的,治疗后第一批患者的α-半乳糖苷酶A水平在治疗后会迅速大幅升高。然而,目前很大程度上仍不清楚这些治疗效应是持久的,还是后期需要进行重复基因治疗来维持 [44] 。需要进行进一步的临床试验,产生的结果将进一步评估该治疗方法的益处和风险,如该治疗方法会产生中和抗体和免疫反应。

6. 结论

FD是一种进行性、破坏性和可危及生命的疾病,极大地降低了预期寿命,因此应该尽一切努力实现早期诊断,尽早开始治疗是阻止疾病进展的唯一希望。杂合子女性一度被认为只是携带者,现阶段发现其可能会有从轻微到严重的各种表现。酶替代疗法在FD继发的肾脏和心脏疾病中有较好的应用前景,但在中枢神经系统疾病中的治疗中作用尚不明确。根据既往文献,本文对Fabry病累及的器官系统的致病机制、临床表现、诊断及治疗方法进行了综合论述,以求对FD能有较全面的了解。

文章引用

陈梦珂,石晓梦,韩玲玲,周 谦,邵乐平. Fabry病的临床诊断及治疗进展
Clinical Diagnosis and Treatment Progress of Fabry Disease[J]. 临床医学进展, 2023, 13(05): 7821-7828. https://doi.org/10.12677/ACM.2023.1351093

参考文献

  1. 1. Azevedo, O., Gago, M.F., Miltenberger-Miltenyi, G., Sousa, N. and Cunha, D. (2020) Fabry Disease Therapy: State- of-the-Art and Current Challenges. International Journal of Molecular Sciences, 22, Article 206. https://doi.org/10.3390/ijms22010206

  2. 2. Michaud, M., Mauhin, W., Belmatoug, N., et al. (2021) [Fabry Disease: A Review]. La Revue de Médecine Interne, 42, 110-119. (In French) https://doi.org/10.1016/j.revmed.2020.08.019

  3. 3. Tuttolomondo, A., Simonetta, I., Riolo, R., et al. (2021) Patho-genesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies. International Journal Of Molecular Sciences, 22, Article 10088. https://doi.org/10.3390/ijms221810088

  4. 4. Shen, J.S., Balaji, U., Shigeyasu, K., et al. (2022) Dysregulated DNA Methylation in the Pathogenesis of Fabry Disease. Molecular Genetics and Metabolism Reports, 33, Article ID: 100919. https://doi.org/10.1016/j.ymgmr.2022.100919

  5. 5. Branton, M.H., Schiffmann, R., Sabnis, S.G., et al. (2002) Natural History of Fabry Renal Disease: Influence of α-Galactosidase A Activity and Genetic Mutations on Clinical Course. Medicine, 81, 122-138. https://doi.org/10.1097/00005792-200203000-00003

  6. 6. Kok, K., Zwiers, K.C., Boot, R.G., Overkleeft, H.S., Aerts, J.M.F.G. and Artola, M. (2021) Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules, 11, Article 271. https://doi.org/10.3390/biom11020271

  7. 7. Echevarria, L., Benistan, K., Toussaint, A., et al. (2016) X-Chromosome Inactivation in Female Patients with Fabry Disease. Clinical Genetics, 89, 44-54. https://doi.org/10.1111/cge.12613

  8. 8. Maue, M., Glynn, E., Svarstad, E., et al. (2014) Mosaicism of Podocyte Involvement Is related to Podocyte Injury in Females with Fabry Disease. PLOS ONE, 9, e112188. https://doi.org/10.1371/journal.pone.0112188

  9. 9. Macdermot, K.D., Holmes, A. and Miners, A.H. (2001) An-derson-Fabry Disease: Clinical Manifestations and Impact of Disease in a Cohort of 60 Obligate Carrier Females. Journal of Medical Genetics, 38, 769-775. https://doi.org/10.1136/jmg.38.11.769

  10. 10. Azevedo, O., Gal, A., Faria, R., et al. (2020) Founder Effect of Fabry Disease Due to p.F113L Mutation: Clinical Profile of a Late-Onset Phenotype. Molecular Genetics and Metabolism, 129, 150-160. https://doi.org/10.1016/j.ymgme.2019.07.012

  11. 11. Chien, Y.H., Lee, N.C., Chiang, S.-C., Desnick, R.J. and Hwu, W.-L. (2012) Fabry Disease: Incidence of the Common Later-Onset α-Galactosidase A IVS4+919G→A Mutation in Taiwanese Newborns—Superiority of DNA-Based to Enzyme-Based Newborn Screening for Common Mutations. Mo-lecular Medicine, 18, 780-784. https://doi.org/10.2119/molmed.2012.00002

  12. 12. Harzer, K., Beck-Wodl, S. and Haack, T.B. (2022) Angiokerato-ma Corporis Diffusum with Severe Acroparesthesia, an Endothelial Abnormality and Inconspicuous Genetic Findings. Journal of Cutaneous Pathology, 49, 293-298. https://doi.org/10.1111/cup.14154

  13. 13. Nagai-Sangawa, M., Fukunaga, A., Takeuchi, C., et al. (2022) Beneficial Screening of Fabry Disease in Patients with Hypohidrosis. The Journal of Dermatology, 49, 308-312. https://doi.org/10.1111/1346-8138.16237

  14. 14. Lidove, O., Ramaswami, U., Jaussaud, R., et al. (2006) Hyperhi-drosis: A New and Often Early Symptom in Fabry Disease. International Experience and Data from the Fabry Outcome Survey. International Journal of Clinical Practice, 60, 1053-1059. https://doi.org/10.1111/j.1742-1241.2006.01061.x

  15. 15. Ortiz, A., Oliveira, J.P., Waldek, S., et al. (2008) Nephrop-athy in Males and Females with Fabry Disease: Cross-Sec- tional Description of Patients before Treatment with Enzyme Replacement Therapy. Nephrology Dialysis Transplantation, 23, 1600-1607. https://doi.org/10.1093/ndt/gfm848

  16. 16. Warnock, D.G., Thomas, C.P., Vujkovac, B., et al. (2015) Antiproteinuric Therapy and Fabry Nephropathy: Factors Associated with Preserved Kidney Function during Agalsidase-Beta Therapy. Journal of Medical Genetics, 52, 860- 866. https://doi.org/10.1136/jmedgenet-2015-103471

  17. 17. Abensur, H. and Reis, M.A. (2016) Renal Involvement in Fabry Disease. Brazilian Journal of Nephrology, 38, 245-254. https://doi.org/10.5935/0101-2800.20160034

  18. 18. Graziani, F., Lillo, R., Biagini, E., et al. (2022) Myocardial In-farction with Non-Obstructive Coronary Arteries in Hypertrophic Cardiomyopathy vs Fabry Disease. International Journal of Cardiology, 369, 29-32. https://doi.org/10.1016/j.ijcard.2022.07.046

  19. 19. Sado, D.M., White, S.K., Piechnik, S.K., et al. (2013) Identifica-tion and Assessment of Anderson-Fabry Disease by Cardiovascular Magnetic Resonance Noncontrast Myocardial T1 mapping. Circulation: Cardiovascular Imaging, 6, 392-398. https://doi.org/10.1161/CIRCIMAGING.112.000070

  20. 20. Aquaro, G.D., De Gori, C., Faggioni, L., et al. (2022) Cardiac Magnetic Resonance in Fabry Disease: Morphological, Functional and Tissue Features. Diagnostics, 12, Article 2652. https://doi.org/10.3390/diagnostics12112652

  21. 21. Sims, K., Politei, J., Banikazemi, M., et al. (2009) Stroke in Fabry Disease Frequently Occurs before Diagnosis and in the Absence of other Clinical Events: Natural History Data from the Fabry Registry. Stroke, 40, 788-794. https://doi.org/10.1161/STROKEAHA.108.526293

  22. 22. Liu, D., Hu, K., Schmidt, M., et al. (2018) Value of the CHA2DS2-VASc Score and Fabry-Specific Score for Predicting New-Onset or Recurrent Stroke/TIA in Fabry Disease Patients without Atrial Fibrillation. Clinical Research in Cardiology, 107, 1111-1121. https://doi.org/10.1007/s00392-018-1285-4

  23. 23. Nilsson, M., Kolagari, H.T., Epstein, D., et al. (2022) Visual Outcome, Ocular Findings and Visual Quality of Life in Patients with Fabry Disease. Ophthalmic Genetics, 43, 841-849. https://doi.org/10.1080/13816810.2022.2132515

  24. 24. Van Der Tol, L., Sminia, M.L., Hollak, C.E. and Bieg-straaten, M. (2016) Cornea Verticillata Supports a Diagnosis of Fabry Disease in Non-Classical Phenotypes: Results from the Dutch Cohort and a Systematic Review. British Journal of Ophthalmology, 100, 3-8. https://doi.org/10.1136/bjophthalmol-2014-306433

  25. 25. Bitirgen, G., Turkmen, K., Zengin, N. and Malik, R.A. (2021) Altered Pupillary Light Responses Are Associated with the Severity of Autonomic Symptoms in Patients with Fabry Disease. Scientific Reports, 11, Article No. 8146. https://doi.org/10.1038/s41598-021-87589-x

  26. 26. Yazdanfard, P.D.W., Effraimidis, G., Madsen, C.V., et al. (2022) Hearing Loss in Fabry Disease: A 16 Years Follow-Up Study of the Danish Nationwide Cohort. Molecular Genetics and Metabolism Reports, 31, Article ID: 100841. https://doi.org/10.1016/j.ymgmr.2022.100841

  27. 27. Mersebach, H., Johansson, J.O., Rasmussen, A.K., et al. (2007) Osteopenia: A Common Aspect of Fabry Disease. Predictors of Bone Mineral Density. Genetics in Medicine, 9, 812-818. https://doi.org/10.1097/GIM.0b013e31815cb197

  28. 28. Politei, J., Frabasil, J., Durand, C., et al. (2021) Incidental Finding of Cornea Verticillata or Lamellar Inclusions in Kidney Biopsy: Measurement of lyso-Gb3 in Plasma Defines between Fabry Disease and Drug-Induced Phospholipidosis. Biochimica et Biophysica Acta (BBA): Molecular Basis of Disease, 1867, Article ID: 165985. https://doi.org/10.1016/j.bbadis.2020.165985

  29. 29. Smid, B.E., Van Der Tol, L., Biegstraaten, M., et al. (2015) Plasma Globotriaosylsphingosine in Relation to Phenotypes of Fabry disease. Journal of Medical Genetics, 52, 262-268. https://doi.org/10.1136/jmedgenet-2014-102872

  30. 30. Rusu, E.E., Zilisteanu, D.S., Ciobotaru, L.M., et al. (2022) The Impact of Kidney Biopsy for Fabry Nephropathy Evaluation on Patients’ Management and Long-Term Outcomes: Experience of a Single Center. Biomedicines, 10, Article 1520. https://doi.org/10.3390/biomedicines10071520

  31. 31. Torra, R. (2008) Renal Manifestations in Fabry Disease and Therapeutic Options. Kidney International, 74, S29-3S2. https://doi.org/10.1038/ki.2008.522

  32. 32. Kim, I.Y., Lee, H.J. and Cheon, C.K. (2021) Fabry Nephropathy before and after Enzyme Replacement Therapy: Important Role of Renal Biopsy in Patients with Fabry Disease. Kidney Re-search and Clinical Practice, 40, 611-619. https://doi.org/10.23876/j.krcp.21.056

  33. 33. Van Der Tol, L., Smid, B.E., Poorthuis, B.J., et al. (2014) A Systematic Review on Screening for Fabry Disease: Prevalence of Individuals with Genetic Variants of Unknown Significance. Journal of Medical Genetics, 51, 1-9. https://doi.org/10.1136/jmedgenet-2013-101857

  34. 34. Sodre, L.S.S., Huaira, R., Colugnati, F.A.B., et al. (2021) Screening of Family Members of Chronic Kidney Disease Patients with Fabry Disease Mutations: A very Important and Underrated Task. Brazilian Journal of Nephrology, 43, 28-33.

  35. 35. Kubota, T., Tsukimura, T., Shiga, T., et al. (2022) Monitoring of Anti-Drug Antibodies and Disease-Specific Biomarkers in Three Patients from a Japanese Fabry Family Treated with Enzyme Replacement Therapy. CEN Case Reports, 12, 171-175. https://doi.org/10.1007/s13730-022-00738-7

  36. 36. Anisha, G.S. (2023) Biopharmaceutical Applications of α-Galactosidases. Biotechnology and Applied Biochemistry, 70, 257-267. https://doi.org/10.1002/bab.2349

  37. 37. Li, Q., Wang, J., Tian, M., et al. (2023) Clinical Features and Enzyme Replacement Therapy in 10 Children with Fabry dis-ease. Frontiers in Pediatrics, 11, Article 1084336. https://doi.org/10.3389/fped.2023.1084336

  38. 38. Stucky, C.L. and Mikesell, A.R. (2021) Cutaneous Pain in Disorders Affecting Peripheral Nerves. Neuroscience Letters, 765, Article ID: 136233. https://doi.org/10.1016/j.neulet.2021.136233

  39. 39. Sun, L., Zi, X., Wang, Z., et al. (2022) IgA Nephropathy with Mimicking Fabry Disease: A Case Report and Literature Review. Medicine, 101, e31060. https://doi.org/10.1097/MD.0000000000031060

  40. 40. Saeed, S. and Imazio, M. (2022) Fabry Disease: Definition, Incidence, Clinical Presentations and Treatment—Focus on cardiac Involvement. Pakistan Journal of Medical Sciences, 38, 2337-2344. https://doi.org/10.12669/pjms.38.8.7063

  41. 41. Gościniak, P., Baron, T., Milczarek S, et al. (2022) Updates for the Diagnosis and Management of Cardiac Amyloidosis. Advances in Clinical and Experimental Medicine, 31, 175-185. https://doi.org/10.17219/acem/142252

  42. 42. Chimenz, R., Chirico, V., Cuppari, C., et al. (2022) Fabry Disease and Kidney Involvement: Starting from Childhood to Understand the Future. Pediatric Nephrology, 37, 95-103. https://doi.org/10.1007/s00467-021-05076-x

  43. 43. Muntean, C., Starcea, I.M., Stoica, C. and Banescu, C. (2022) Clinical Characteristics, Renal Involvement, and Therapeutic Options of Pediatric Patients with Fabry Disease. Frontiers in Pediatrics, 10, Article 908657. https://doi.org/10.3389/fped.2022.908657

  44. 44. Oder, D., Muntze, J. and Nordbeck, P. (2021) Contemporary Therapeutics and New Drug Developments for Treatment of Fabry Disease: A Narrative Review. Cardiovascular Diag-nosis and Therapy, 11, 683-695. https://doi.org/10.21037/cdt-20-743

  45. NOTES

    *通讯作者。

期刊菜单