Advances in Clinical Medicine
Vol. 14  No. 04 ( 2024 ), Article ID: 84365 , 9 pages
10.12677/acm.2024.1441087

Reg蛋白家族在糖尿病中的研究现状

郑亚莲,杨刚毅*

重庆医科大学附属第二医院,内分泌与代谢病科,重庆

收稿日期:2024年3月11日;录用日期:2024年4月4日;发布日期:2024年4月12日

摘要

糖尿病(Diabetes Mellitus, DM)是一种全球流行病,随着生活水平的提高及全球老龄化,DM患病率越来越高,成为世界范围内主要的健康负担。胰岛β细胞功能受损和数量减少是糖尿病病理生理机制的中心环节。目前1型糖尿病(Type 1 Diabetes Mellitus, T1DM)和病程较长的2型糖尿病(Type 2 Diabetes Mellitus, T2DM)患者的治疗主要是补充外源性胰岛素,但难以控制血糖长期稳定达标,且不良管理可带来严重后果,需要新的治疗策略来保护或补充功能胰岛β细胞群,从而维持血糖稳态。再生蛋白(Regenerating protein, Reg)属于钙依赖凝集素超家族成员,是一种具有营养、抗凋亡、抗炎、抗菌和免疫调节作用的多功能分泌分子。根据Reg基因编码蛋白的一级结构,Reg蛋白家族可分为4个亚型(I, II, III, IV)。近年来,Reg蛋白在促进胰岛β细胞再生和改善血糖水平中的作用引起重视,可能成为潜在的糖尿病预测及治疗的新靶点。本文就Reg基因蛋白结构、功能及其在糖尿病领域的研究现状进行综述。

关键词

糖尿病,再生蛋白,研究现状

Current Research Status of Regenerating Protein (Reg) Family in Diabetes Mellitus

Yalian Zheng, Gangyi Yang*

Department of Endocrinology and Metabolic, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Mar. 11th, 2024; accepted: Apr. 4th, 2024; published: Apr. 12th, 2024

ABSTRACT

Diabetes Mellitus (DM) is a global epidemic. With the improvement of people’s living standards and global aging, it has become a major health burden worldwide. Impaired function and decreased number of islet beta cells are the central link in the pathophysiological mechanism of diabetes mellitus. At present, the treatment of Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM) patients with a long course of disease is mainly to supplement exogenous insulin, but it is difficult to control blood sugar for a long time to reach the standard. Poor management can lead to serious consequences, and new therapeutic strategies are needed to protect or supplement the functional islet beta cell population to maintain glucose homeostasis. Regenerating proteins (Reg) belong to the calcium-dependent lectin superfamily, which is a multifunctional secretory molecule with nutritional, anti-apoptotic, anti-inflammatory, antibacterial and immunomodulatory effects. According to the primary structure of the protein encoded by Reg gene, the Reg protein family can be divided into four subtypes (I, II, III, IV). In recent years, the role of Reg protein in promoting islet beta cell regeneration and improving blood glucose level has attracted attention, which may become a potential new target for diabetes prediction and treatment. This article reviews the structure, function and research status of Reg gene protein in the field of diabetes.

Keywords:Diabetes Mellitus, Regenerating Protein (Reg), Current Research Status

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

糖尿病(Diabetes Mellitus, DM)是一种严重的慢性疾病,已成为全球范围内社会负担和死亡的主要原因之一。2021年国际糖尿病联盟(International diabetes federation, IDF)发布的全球糖尿病地图显示:全球有5.37亿人患有糖尿病。根据柳叶刀发表的一项关于糖尿病全球疾病负担研究,预计到2050年全球患糖尿病的人数将增加到13.1亿人。此外,IDF发布的数据提示,全球每10名成年人中就有1名罹患糖尿病,中国是西太平洋地区死于糖尿病病人数最多的国家,中国的糖尿病相关医疗支出位居世界第二 [1] [2] 。1型糖尿病(Type 1 Diabetes Mellitus, T1DM)是一种自身免疫性疾病,以T细胞介导的胰岛β细胞破坏为特征,导致胰岛素合成和分泌不足 [3] 。在T1DM的自然病史中,出现血糖异常症状(包括多尿症或糖尿病酮症酸中毒)时,β细胞团已经达到一个临界阈值(通常是正常量的20%~30%) [4] 。2型糖尿病(Type 2 Diabetes Mellitus, T2DM)患病人数约占糖尿病总人数的90%,其特征是胰岛素抵抗和进行性胰岛β细胞功能减退。与非糖尿病患者胰岛相比,T2DM患者胰岛组织中β细胞数量减少约40%,胰岛β细胞功能在T2DM发病时减少约80% [5] 。

T1DM患者因自身胰岛素分泌绝对缺乏,需终身使用胰岛素替代治疗,而外源性胰岛素治疗存在低血糖、体重增加、过敏反应、皮下脂肪增生、脂肪萎缩以及注射部位疼痛等不良反应,使得患者依从性降低,增加了血糖控制难度 [6] 。T2DM患者早中期可以通过不同作用机制的降糖药物控制血糖,但是现有降糖药物并不能阻止胰岛β细胞功能的进行性下降。一项横断面研究显示,我国T2DM患者的胰岛β细胞功能以每年2%的速度下降 [7] 。而外源性补充胰岛素无法完全模拟生理性胰岛素分泌的精细调控,难以维持血糖控制的长期稳定达标。糖尿病患者需要新的治疗策略来保护或补充功能胰岛β细胞群,从而维持血糖稳态,增加胰岛β细胞数量、改善胰岛β细胞的分泌功能、加强内源性胰岛素代谢调节有助于重建胰岛素分泌的生理调节机制,是改善糖尿病临床疗效的潜在希望。随着近年来对再生蛋白(Regenerating protein, Reg)家族的深入研究,Reg蛋白在糖尿病治疗领域脱颖而出,有望为胰岛再生和修复提供新途径。故本文就Reg基因蛋白结构、功能及其在糖尿病领域的研究现状进行综述,以期为临床诊治提供思路。

2. Reg蛋白家族

2.1. Reg蛋白家族分类

1979年,在胰腺结石中发现了第一个Reg蛋白,命名为胰腺结石蛋白(Pancreatic stone protein, PSP) [8] 。由于其抑制胰腺结石形成的潜在作用,PSP也被称为抑石药 [9] 。1984年,Yonemura等人在胰腺切除90%术后的大鼠再生胰岛中发现该蛋白,其可改善术后糖尿病大鼠疾病状态 [10] ,由此创造了术语“再生蛋白”,后来有报道称Reg I蛋白。自Reg I蛋白发现以来,再生蛋白家族其他成员陆续被发现,根据Reg基因编码蛋白质的一级结构,Reg蛋白家族可分为4类:Reg I、Reg II、Reg III、Reg IV,为了标准化不同物种间Reg蛋白的名称,将Reg蛋白家族进一步分类,在啮齿类动物中,Reg蛋白家族包括大鼠Reg I、小鼠Reg I,Reg II仅有小鼠Reg II,大鼠Reg IIIα、Reg IIIβ、Reg IIIγ及小鼠Reg IIIα、Reg IIIβ、Reg IIIγ、Reg IIIδ,大鼠和小鼠Reg IV。在人类中,Reg蛋白家族包括人Reg Iα和Reg Iβ,人Reg IIIβ和Reg IIIγ,人Reg IV [11] 。如表1所示。

Table 1. Member of the regenerative protein family

表1. 再生蛋白家族成员

2.2. Reg蛋白结构、分布及相关作用

Reg蛋白家族中,除了Reg IV基因有7个外显子,其它Reg基因都有6个外显子和5个内含子。在人类中,Reg IV基因位于染色体1p11-3上,而其它基因位于染色体2p12 [11] 。Reg蛋白家族的相对分子质量为16,000~17,000,根据蛋白质一级结构和结构域特征,Reg蛋白家族属于钙依赖性凝集素超家族成员,而凝集素被认为具有有丝分裂特性。Reg蛋白含有约120个氨基酸的钙依赖碳水化合物识别域(Carbohydrate recognition domains, CRD),可选择性结合多种配体和碳水化合物 [12] 。Reg蛋白的另一个结构特征是氨基末端都有一个类似信号肽的结构,由21~25个氨基酸残基构成,具有胰蛋白酶的裂解位点 [13] ,胰蛋白酶消化产生可溶性短肽和剩余的由大约130个残基组成的不可溶性片段 [14] 。

M E Zenilman等人用Northern分析法测定Reg基因在大鼠胰腺导管细胞、腺泡细胞和胰岛β细胞中的表达,发现Reg mRNA在腺泡中表达,但不在胰岛β细胞或导管胰腺细胞系中表达,并且Reg蛋白对 胰岛β细胞系和导管细胞系均有丝分裂作用 [15] 。最近有研究表明,Reg I在胃肠嗜铬素样细胞中表达,其产生受胃泌素刺激,作为有丝分裂因子促进胃上皮细胞增殖 [16] 。Reg II仅在小鼠中检测到,没有人同源基因,已知Reg II mRNA主要表达于正常的胰腺腺泡和增生性胰岛中 [17] 。Reg III主要在肠道中高表达,在消化道上皮细胞的再生过程中起作用,IL-22信号转导可诱导肠内Reg IIIα和Reg IIIγ表达,增强肠干细胞和Paneth细胞的存活 [18] 。另一方面,Reg III也在胰腺中表达,在氧化应激过程中发挥抗凋亡和抗炎作用 [19] 。最近发现的成员Reg IV最初是由Hartupee等人从溃疡性结肠炎cDNA文库中分离出来的 [20] 。Reg IV主要在胃肠道表达,包括结肠、小肠、胃和胰腺,在前列腺癌中有少量表达,组织受损时在其他部位也有异位表达 [21] 。近年来,多项研究表明Reg IV可能参与组织修复、细胞增殖和迁移。在实验性胰腺炎小鼠中,Reg IV可以通过调控Notch信号促进胰腺再生和预防胰腺炎后胰腺外分泌功能不全 [22] 。肠道Reg IV缺乏可通过增加小鼠肠道脂肪吸收,使小鼠易发生高脂肪饮食诱导的肝脏脂肪变性,而诱导Reg IV表达可降低肠道脂肪吸收 [23] 。而在胃癌、结直肠癌、胰腺癌、胆囊癌、卵巢癌和尿路上皮癌中,Reg IV的过表达与侵袭性行为和不良预后密切相关 [24] 。

2.3. Reg蛋白表达调控及信号通路

Reg蛋白的表达受多种诱导剂的调控,包括营养物质、激素、生长因子和细菌感染,特别是细胞因子,是Reg蛋白表达的主要调节因子 [25] 。链脲佐菌素诱导小鼠糖尿病后,小鼠胰岛Reg I呈阳性 [26] 。在给药环磷酰胺的非肥胖糖尿病(Non-Obese Diabetic,NOD)小鼠中,Reg II也过表达 [27] 。在干扰素γ和TNF-α单独处理的大鼠胰腺腺泡AR42J细胞中,Reg I表达上调,促炎性和促凋亡因子脂多糖也通过上调TNF-α和白细胞介素直接或间接地促进Reg I表达 [28] 。因此,RegI的表达可能与细胞凋亡的引发有关。Reg蛋白也与中枢神经系统细胞的增殖有关,大鼠Reg IIIβ是雪旺细胞或运动神经元有丝分裂原,促进损伤后的再生,突变的白血病抑制因子(Leukemia inhibitory factor, LIF)受体纯合的小鼠胚胎在其运动和感觉神经元中不表达Reg IIIβ [29] ,由此可推测通过LIF受体复合物(gp130和LIF受体β)作用于LIF家族细胞因子可调节Reg IIIβ的表达。Reg蛋白的表达也存在于其他内分泌组织中,如垂体和卵巢,并受上述因素的调节。如当使用生长激素释放激素时,大鼠垂体细胞分泌Reg IIIβ,而暴露于生长抑素具有相反的效果 [30] 。

尽管有大量证据表明Reg蛋白在正常和病理条件下与细胞分化、增殖和保护细胞免于凋亡有关,但对Reg信号传递的途径知之甚少。Reg蛋白的推定受体 [31] 与人类外泌素样糖基转移酶3 (Exostosis-like gene 3, EXTL3)的同源性超过97% [32] 。该基因编码α-1,4-N-乙酰氨基葡萄糖转移酶I和II酶,参与硫酸肝素的生物合成。在成年小鼠中,在脾脏、肝脏、睾丸、胃和心脏中检测到Extl3转录本,而在胰腺和大脑中发现表达最强 [33] 。进一步研究发现,β-细胞中过表达EXTL3可触发活化转录因子-2的表达 [34] ,Reg Iα通过其受体EXTL3在神经元细胞系和海马原代神经元中调控神经突触生长 [35] 。另一方面,推测CD44可能是Reg IV受体,因为两者在结直肠癌增殖 [36] 中表现出相互作用。Wang等人发现G蛋白偶联受体37与Reg IV是同一复合体的一部分,介导Reg IV的信号转导,促进胃癌细胞的腹膜转移 [37] 。

3. Reg蛋白家族在糖尿病中的病理生理学

早期研究表明,使用人Reg Iα蛋白和免疫调节剂联合治疗NOD小鼠,可明显改善糖耐量和胰腺β细胞团 [38] 。Reg I基因的破坏可降低胰岛β细胞的增殖能力,与此相反,携带Reg I转基因NOD小鼠的糖尿病发展显著延缓,提示Reg I蛋白可能是胰岛β细胞的再生因子 [39] 。有研究报道,野生型小鼠在EMC (encephalomyocarditis)病毒感染后,胰腺中腺泡样细胞簇出现了Reg I的高表达,Reg I的高表达可能与IL-6和IL-1b介导的炎症通路有关,并且发现Reg I在EMC病毒诱导的β细胞损伤中具有再生功能 [40] [41] 。有学者发现,用含有分枝杆菌的佐剂(Complete Freund’s adjuvant, CFA)对NOD小鼠进行免疫治疗,可下调自身免疫抑制NOD小鼠糖尿病的进展,并且能使小部分终末期NOD小鼠恢复正常血糖,学者推测,糖尿病前期小鼠使用CFA免疫可能诱导Th17细胞产生IL-22,IL-22与胰岛β细胞上的受体复合物结合后,激活JAK-STAT3信号转导通路,可导致Reg I基因表达上调,这可能与NOD小鼠β细胞再生和高血糖逆转有关 [42] 。尽管Reg I具有促进胰岛β细胞再生的作用,但有研究表明,Reg Iα在胰腺癌细胞增殖中有重要作用,其促肿瘤活性可能会阻碍其在糖尿病治疗中的临床应用,但可以为理解糖尿病和胰腺癌之间关系的分子机制提供新的见解 [43] 。在临床研究中,不同类型的糖尿病,包括T1DM、年轻的成熟型糖尿病(MODY)、和T2DM均有血清Reg Iα水平的升高。T2DM患者在首次诊断时和出现并发症后均出现Reg上调,T2DM和MODY患者的Reg水平与发病时间相关,在T1DM中观察到循环中Reg Iα水平与病程呈负相关 [44] [45] [46] ,与非糖尿病患者和T2DM患者相比,T1DM患者血清中Reg Iα水平的升高其相应的自身抗体水平显著升高。有研究发现Reg Iα水平与年龄、血肌酐、尿素氮呈正相关,与肾小球滤过率(estimated glomerular filtration rate, eGFR)呈负相关,Reg Iα与eGFR的关系提示Reg Iα可能是肾功能不全的一个潜在指标 [47] 。

Reg II基因通常在胰腺腺泡细胞中表达,并在糖尿病、胰腺炎和高脂肪饮食(estimated glomerular filtration rate, HFD)和胰腺再生过程中被显著诱导,Qing Li等人对Reg II基因缺陷的小鼠进行了研究,发现在老年小鼠中,Reg II缺乏可导致小鼠胰岛体积减少、胰岛素水平降低。同样,在HFD诱导的肥胖小鼠中,胰岛细胞增殖率、胰岛补偿面积减少,这些结果证明,对于肥胖和衰老,Reg II基因的正常表达对胰岛的维护和补偿是至关重要的 [48] 。Gurr [49] 等人发现Reg II可作为自身抗原参与NOD小鼠糖尿病的发生,给NOD小鼠注射全长的Reg II蛋白,在早期能够延缓其糖尿病的发生,随后Reg II蛋白加速糖尿病的发生。而Luting Yu等人研究证明,用重组Reg II蛋白(rReg II)治疗链脲佐菌素(STZ)诱导的糖尿病小鼠,可保留糖尿病小鼠的胰岛β细胞质量,改善血糖,进一步的rReg II治疗可抵抗自身抗原的破坏作用。因此,rReg II对胰岛β细胞的保护作用大于作为自身抗原的破坏作用 [50] 。Hong Wang等人提出,小鼠Reg II基因的表达与胰腺中细胞内清除活性氧(ros)的硒依赖性谷胱甘肽过氧化物酶1 (GPX1)和Cu-Zn超氧化物歧化酶(SOD1)活性之间存在很大程度的反向关系。实验证明,敲除了GPX1和SOD1基因的小鼠胰岛中Reg II表达上调,与胰岛β细胞量减少和胰岛素分泌量减少有关,而GPX1过表达的小鼠胰岛中Reg II表达下调,并伴有胰岛增生、高胰岛素血症和葡萄糖刺激的胰岛素分泌增加,提示我们不应该简单地将Reg II视为胰岛β细胞的生长因子,它也可能是作为一种急性应激反应物,调节代谢改变 [51] 。

在小鼠中,Reg III蛋白家族成员在肠道(Reg IIIα, Reg IIIβ, Reg IIIγ)和胰腺(Reg III δ)中大量表达 [52] [53] 。有啮齿动物研究报告称,在高脂肪饮食或基因修饰引起的代谢紊乱中,肠道Reg IIIγ表达下调,导致肥胖和糖调节受损,而多种类型的减肥手术可导致Reg IIIγ在肠道中的表达增加 [54] [55] 。此外,肠道中的胆汁酸和外源性胰高血糖素样肽-1受体激动剂可刺激Reg IIIγ的产生 [56] [57] 。这些数据表明Reg IIIγ的产生受各种代谢条件的影响。在NOD小鼠中,注射慢病毒载体包装的Reg IIIγ,发现其诱导调节性T细胞(regulatory T cells, Tregs)分化,抑制树突状细胞(dendritic cell, DC)成熟,减少胰岛淋巴细胞浸润,减弱自身免疫反应并通过激活JAK2/STAT3通路降低1型糖尿病的发生 [58] 。最近,EXTL3被鉴定为Reg IIIγ的结合蛋白,并且Reg IIIγ-EXTL3信号通路参与多种细胞生理功能的调节过程,小鼠胰岛β细胞的EXTL3缺失可导致葡萄糖调节和胰岛素分泌受损,以及胰岛形态异常 [59] 。使用免疫抑制药物他克莫司可抑制STAT3介导的转录激活并导致β-细胞衰竭,而这种情况可通过Reg IIIγ治疗恢复胰岛素分泌和线粒体功能 [60] [61] 。除了Reg IIIγ之外,Tehmina Siddique [62] 等利用四氧嘧啶诱导的小鼠糖尿病模型研究Reg III δ生物活性肽对血糖以及胰腺基因表达水平的影响,发现给予Reg III δ治疗的模型小鼠血糖水平显著下降,并且几乎恢复到正常水平,定量聚合酶链反应分析结果表明,给予Reg III δ肽治疗后,转录因子Ngn-3和Pdx-1的mRNA水平明显增加,Reg III δ有可能通过调节胰腺内分泌前体标志物Pdx-1和Ngn-3的基因表达来逆转高血糖。由基因工程表达菌E. coli (T7 Expression)构建的重组Reg IIIα蛋白,经纯化后能够促进MIN6细胞和原代胰岛增值,抵抗毒胡萝卜内酯诱导MIN6细胞内质网应激反应,表明重组Reg IIIα蛋白具有作为外源性药物促进胰岛β细胞增值、抗凋亡活性 [63] 。

4. 结语与展望

糖尿病的发生发展与胰岛β细胞功能损伤及数量减少密切相关,在针对胰岛β功能恢复及再生的治疗对策中,Reg蛋白具有良好的发展前景。在糖尿病中,Reg蛋白具有调节免疫、抗炎、促进胰岛β细胞再生、抗凋亡等作用,从而改善血糖水平。此外,Reg蛋白水平与糖尿病病程密切相关,可以预测疾病的进展情况。但是目前对Reg蛋白确切的分子作用机制、调控机制、受体及受体后信号传递途径尚不十分清楚,大多数研究也仅限于动物模型上,有待进一步全面、规范、深入研究,为Reg蛋白在糖尿病领域的诊治明确思路,提供新靶点。

文章引用

郑亚莲,杨刚毅. Reg蛋白家族在糖尿病中的研究现状
Current Research Status of Regenerating Protein (Reg) Family in Diabetes Mellitus[J]. 临床医学进展, 2024, 14(04): 759-767. https://doi.org/10.12677/acm.2024.1441087

参考文献

  1. 1. Ong, K.L., Stafford, L.K., McLaughlin, S.A., et al. (2023) Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 402, 203-234. https://doi.org/10.1016/S0140-6736(23)01301-6

  2. 2. Sun, H., Saeedi, P., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article 109119.https://doi.org/10.1016/j.diabres.2021.109119

  3. 3. Haller, M.J., Atkinson, M.A. and Schatz, D. (2005) Type 1 Diabetes Mellitus: Etiology, Presentation, and Management. Pediatric Clinics of North America, 52, 1553-1578. https://doi.org/10.1016/j.pcl.2005.07.006

  4. 4. Chellappan, D.K., Sivam, N.S., Teoh, K.X., et al. (2018) Gene Therapy and Type 1 Diabetes Mellitus. Biomedicine & Pharmacotherapy, 108, 1188-1200. https://doi.org/10.1016/j.biopha.2018.09.138

  5. 5. Eizirik, D.L., Pasquali, L. and Cnop, M. (2020) Pancreatic β-Cells in Type 1 and Type 2 Diabetes Mellitus: Different Pathways to Failure. Nature Reviews Endocrinology, 16, 349-362. https://doi.org/10.1038/s41574-020-0355-7

  6. 6. 周智广, 等. 《中国1型糖尿病诊治指南(2021版)》解读[J]. 中华糖尿病杂志, 2022, 14(11): 1123-1127.

  7. 7. Gao, Z., Yan, W., Fang, Z., et al. (2021) Annual Decline in β-Cell Function in Patients with Type 2 Diabetes in China. Diabetes/Metabolism Research and Reviews, 37, e3364. https://doi.org/10.1002/dmrr.3364

  8. 8. De Caro, A., Lohse, J. and Sarles, H. (1979) Characterization of a Protein Isolated from Pancreatic Calculi of Men Suffering from Chronic Calcifying Pancreatitis. Biochemical and Biophysical Research Communications, 87, 1176-1182. https://doi.org/10.1016/S0006-291X(79)80031-5

  9. 9. Bimmler, D., Graf, R., Scheele, G.A., et al. (1997) Pancreatic Stone Protein (Lithostathine), a Physiologically Relevant Pancreatic Calcium Carbonate Crystal Inhibitor? Journal of Biological Chemistry, 272, 3073-3082.https://doi.org/10.1074/jbc.272.5.3073

  10. 10. Terazono, K., Yamamoto, H., Takasawa, S., et al. (1988) A Novel Gene Activated in Regenerating Islets. Journal of Biological Chemistry, 263, 2111-2114. https://doi.org/10.1016/S0021-9258(18)69176-8

  11. 11. Parikh, A., Stephan, A.F. and Tzanakakis, E.S. (2012) Regenerating Proteins and Their Expression, Regulation, and Signaling. Biomolecular Concepts, 3, 57-70. https://doi.org/10.1515/bmc.2011.055

  12. 12. Liu, J.L., Cui, W., Li, B., et al. (2008) Possible Roles of Reg Family Proteins in Pancreatic Islet Cell Growth. Endocrine, Metabolic & Immune Disorders-Drug Targets, 8, 1-10. https://doi.org/10.2174/187153008783928361

  13. 13. De Reggi, M. and Gharib, B. (2001) Protein-X, Pancreatic Stone-, Pancreatic Thread-, Reg-Protein, P19, Lithostathine, and Now What? Characterization, Structural Analysis and Putative Function (S) of the Major Non-Enzymatic Protein of Pancreatic Secretions. Current Protein & Peptide Science, 2, 19-42. https://doi.org/10.2174/1389203013381233

  14. 14. Sekikawa, A., Fukui, H., Suzuki, K., et al. (2010) Involvement of the IL-22/REG Iα Axis in Ulcerative Colitis. Laboratory Investigation, 90, 496-505. https://doi.org/10.1038/labinvest.2009.147

  15. 15. Zenilman, M.E., Magnuson, T.H., Swinson, K., et al. (1996) Pancreatic Thread Protein Is Mitogenic to Pancreatic-Derived Cells in Culture. Gastroenterology, 110, 1208-1214. https://doi.org/10.1053/gast.1996.v110.pm8613011

  16. 16. Fukui, H., Kinoshita, Y., Maekawa, T., et al. (1998) Regenerating Gene Protein May Mediate Gastric Mucosal Proliferation Induced by Hypergastrinemia in Rats. Gastroenterology, 115, 1483-1493.https://doi.org/10.1016/S0016-5085(98)70027-7

  17. 17. Unno, M., Yonekura, H., Nakagawara, K., et al. (1993) Structure, Chromosomal Localization, and Expression of Mouse Reg Genes, Reg I and Reg II. A Novel Type of Reg Gene, Reg II, Exists in the Mouse Genome. Journal of Biological Chemistry, 268, 15974-15982. https://doi.org/10.1016/S0021-9258(18)82347-X

  18. 18. Zhao, D., Kim, Y.H., Jeong, S., et al. (2018) Survival Signal REG3α Prevents Crypt Apoptosis to Control Acute Gastrointestinal Graft-versus-Host Disease. The Journal of Clinical Investigation, 128, 4970-4979.

  19. 19. Vasseur, S., Folch-Puy, E., Hlouschek, V., et al. (2004) P8 Improves Pancreatic Response to Acute Pancreatitis by Enhancing the Expression of the Anti-Inflammatory Protein Pancreatitis-Associated Protein I. Journal of Biological Chemistry, 279, 7199-7207. https://doi.org/10.1074/jbc.M309152200

  20. 20. Hartupee, J.C., Zhang, H., Bonaldo, M.F., et al. (2001) Isolation and Characterization of a CDNA Encoding a Novel Member of the Human Regenerating Protein Family: Reg IV. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1518, 287-293. https://doi.org/10.1016/S0167-4781(00)00284-0

  21. 21. Numata, M. and Oshima, T. (2012) Significance of Regenerating Islet-Derived Type IV Gene Expression in Gastroenterological Cancers. World Journal of Gastroenterology, 18, 3502-3510. https://doi.org/10.3748/wjg.v18.i27.3502

  22. 22. Dai, J., He, Y., Jiang, M., et al. (2021) Reg4 Regulates Pancreatic Regeneration Following Pancreatitis via Modulating the Notch Signaling. Journal of Cellular Physiology, 236, 7565-7577. https://doi.org/10.1002/jcp.30397

  23. 23. Wang, Y., Yan, W., Lu, Y., et al. (2023) Intestinal Reg4 Deficiency Confers Susceptibility to High-Fat Diet-Induced Liver Steatosis by Increasing Intestinal Fat Absorption in Mice. JHEP Reports, 5, Article 100700.https://doi.org/10.1016/j.jhepr.2023.100700

  24. 24. Zheng, H.C., Xue, H. and Zhang, C.Y. (2022) REG4 Promotes the Proliferation and Anti-Apoptosis of Cancer. Frontiers in Cell and Developmental Biology, 10, Article 1012193. https://doi.org/10.3389/fcell.2022.1012193

  25. 25. Francis, P.J., Southgate, J.L., Wilkin, T.J., et al. (1992) Expression of an Islet Regenerating (Reg) Gene in Isolated Rat Islets: Effects of Nutrient and Non-Nutrient Growth Factors. Diabetologia, 35, 238-242.https://doi.org/10.1007/BF00400923

  26. 26. Anastasi, E., Ponte, E., Gradini, R., et al. (1999) Expression of Reg and Cytokeratin 20 during Ductal Cell Differentiation and Proliferation in a Mouse Model of Autoimmune Diabetes. European Journal of Endocrinology, 141, 644-652.https://doi.org/10.1530/eje.0.1410644

  27. 27. Baeza, N., Sanchez, D., Vialettes, B., et al. (1997) Specific Reg II Gene Overexpression in the Non-Obese Diabetic Mouse Pancreas during Active Diabetogenesis. FEBS Letters, 416, 364-368.https://doi.org/10.1016/S0014-5793(97)01241-6

  28. 28. Vaccaro, M.I., Calvo, E.L., Suburo, A.M., et al. (2000) Lipopolysaccharide Directly Affects Pancreatic Acinar Cells. Digestive Diseases and Sciences, 45, 915-926. https://doi.org/10.1023/A:1005521007609

  29. 29. Livesey, F.J., O’Brien, J.A., Li, M., et al. (1997) A Schwann Cell Mitogen Accompanying Regeneration of Motor Neurons. Nature, 390, 614-618. https://doi.org/10.1038/37615

  30. 30. Katsumata, N., Chakraborty, C., Myal, Y., et al. (1995) Molecular Cloning and Expression of Peptide 23, a Growth Hormone-Releasing Hormone-Inducible Pituitary Protein. Endocrinology, 136, 1332-1339.https://doi.org/10.1210/en.136.4.1332

  31. 31. Kobayashi, S., Akiyama, T., Nata, K., et al. (2000) Identification of a Receptor for Reg (Regenerating Gene) Protein, a Pancreatic β-Cell Regeneration Factor. Journal of Biological Chemistry, 275, 10723-10726.https://doi.org/10.1074/jbc.275.15.10723

  32. 32. Van Hul, W., Wuyts, W., Hendrickx, J., et al. (1998) Identification of a Third EXT-Like Gene (EXTL3) Belonging to the EXT Gene Family. Genomics, 47, 230-237. https://doi.org/10.1006/geno.1997.5101

  33. 33. Osman, N.M.S., Kagohashi, Y., Udagawa, J., et al. (2003) α1,4-N-Acetylglucosaminyltransferase Encoding Gene EXTL3 Expression Pattern in Mouse Adult and Developing Tissues with Special Attention to the Pancreas. Anatomy and Embryology, 207, 333-341. https://doi.org/10.1007/s00429-003-0348-z

  34. 34. Takasawa, S., Ikeda, T., Akiyama, T., et al. (2006) Cyclin D1 Activation through ATF-2 in Reg-Induced Pancreatic β-Cell Regeneration. FEBS Letters, 580, 585-591. https://doi.org/10.1016/j.febslet.2005.12.070

  35. 35. Van Ba, I.A.T., Marchal, S., François, F., et al. (2012) Regenerating Islet-Derived 1α (Reg-1α) Protein Is New Neuronal Secreted Factor that Stimulates Neurite Outgrowth via Exostosin Tumor-Like 3 (EXTL3) Receptor. Journal of Biological Chemistry, 287, 4726-4739. https://doi.org/10.1074/jbc.M111.260349

  36. 36. Bishnupuri, K.S., Luo, Q., Murmu, N., et al. (2006) Reg IV Activates the Epidermal Growth Factor Receptor/Akt/AP-1 Signaling Pathway in Colon Adenocarcinomas. Gastroenterology, 130, 137-149.https://doi.org/10.1053/j.gastro.2005.10.001

  37. 37. Wang, H., Hu, L., Zang, M., et al. (2016) REG4 Promotes Peritoneal Metastasis of Gastric Cancer through GPR37. Oncotarget, 7, 27874-27888. https://doi.org/10.18632/oncotarget.8442

  38. 38. Okamoto, H. (1999) The Reg Gene Family and Reg Proteins: With Special Attention to the Regeneration of Pancreatic β-Cells. Journal of Hepato-Biliary-Pancreatic Surgery, 6, 254-262. https://doi.org/10.1007/s005340050115

  39. 39. Unno, M., Nata, K., Noguchi, N., et al. (2002) Production and Characterization of Reg Knockout Mice: Reduced Proliferation of Pancreatic β-Cells in Reg Knockout Mice. Diabetes, 51, S478-S483.https://doi.org/10.2337/diabetes.51.2007.S478

  40. 40. Aida, K., Kobayashi, T., Takeshita, A., et al. (2018) Crucial Role of Reg I from Acinar-Like Cell Cluster Touching with Islets (ATLANTIS) on Mitogenesis of Beta Cells in EMC Virus-Induced Diabetic Mice. Biochemical and Biophysical Research Communications, 503, 963-969. https://doi.org/10.1016/j.bbrc.2018.06.103

  41. 41. Calderari, S., Irminger, J.C., Giroix, M.H., et al. (2014) Regenerating 1 and 3b Gene Expression in the Pancreas of Type 2 Diabetic Goto-Kakizaki (GK) Rats. PLOS ONE, 9, e90045. https://doi.org/10.1371/journal.pone.0090045

  42. 42. Hill, T., Krougly, O., Nikoopour, E., et al. (2013) The Involvement of Interleukin-22 in the Expression of Pancreatic Beta Cell Regenerative Reg Genes. Cell Regeneration, 2, 1-11. https://doi.org/10.1186/2045-9769-2-2

  43. 43. Zhou, L., Zhang, R., Wang, L., et al. (2010) Upregulation of REG Iα Accelerates Tumor Progression in Pancreatic Cancer with Diabetes. International Journal of Cancer, 127, 1795-1803. https://doi.org/10.1002/ijc.25188

  44. 44. Astorri, E., Guglielmi, C., Bombardieri, M., et al. (2010) Circulating Reg1α Proteins and Autoantibodies to Reg1α Proteins as Biomarkers of β-Cell Regeneration and Damage in Type 1 Diabetes. Hormone and Metabolic Research, 42, 955-960. https://doi.org/10.1055/s-0030-1267206

  45. 45. Bacon, S., Kyithar, M.P., Schmid, J., et al. (2012) Serum Levels of Pancreatic Stone Protein (PSP)/Reg1A as an Indicator of Beta-Cell Apoptosis Suggest an Increased Apoptosis Rate in Hepatocyte Nuclear Factor 1 Alpha (HNF1A-MODY) Carriers from the Third Decade of Life Onward. BMC Endocrine Disorders, 12, 1-8.https://doi.org/10.1186/1472-6823-12-13

  46. 46. Yang, J., Li, L., Raptis, D., et al. (2015) Pancreatic Stone Protein/Regenerating Protein (PSP/Reg): A Novel Secreted Protein Up-Regulated in Type 2 Diabetes Mellitus. Endocrine, 48, 856-862. https://doi.org/10.1007/s12020-014-0427-3

  47. 47. Li, L., Jia, D., Graf, R., et al. (2017) Elevated Serum Level of Pancreatic Stone Protein/Regenerating Protein (PSP/Reg) Is Observed in Diabetic Kidney Disease. Oncotarget, 8, 38145-38151. https://doi.org/10.18632/oncotarget.16369

  48. 48. Li, Q., Li, B., Miao, X., et al. (2017) Reg2 Expression Is Required for Pancreatic Islet Compensation in Response to Aging and High-Fat Diet-Induced Obesity. Endocrinology, 158, 1634-1644. https://doi.org/10.1210/en.2016-1551

  49. 49. 崔巍, 刘均利, 施秉银. Reg基因家族蛋白对胰岛β细胞生长的影响[J]. 生理科学进展, 2009, 40(1): 55-58.

  50. 50. Yu, L., Li, X., Zhang, Z., et al. (2019) Dimorphic Autoantigenic and Protective Effects of Reg2 Peptide in the Treatment of Diabetic β-Cell Loss. Diabetes, Obesity and Metabolism, 21, 1209-1222. https://doi.org/10.1111/dom.13644

  51. 51. Wang, H., Vatamaniuk, M.Z., Zhao, Z., et al. (2023) Interdependencies of Gene Expression and Function between Two Redox Enzymes and REG Family Proteins in Murine Pancreatic Islets and Human Pancreatic Cells. Antioxidants, 12, Article 849. https://doi.org/10.3390/antiox12040849

  52. 52. Narushima, Y., Unno, M., Nakagawara, K., et al. (1997) Structure, Chromosomal Localization and Expression of Mouse Genes Encoding Type III Reg, RegIIIα, RegIIIβ, RegIIIγ. Gene, 185, 159-168.https://doi.org/10.1016/S0378-1119(96)00589-6

  53. 53. Abe, M., Nata, K., Akiyama, T., et al. (2000) Identification of a Novel Reg Family Gene, Reg IIIδ, and Mapping of All Three Types of Reg Family Gene in a 75 Kilobase Mouse Genomic Region. Gene, 246, 111-122.https://doi.org/10.1016/S0378-1119(00)00059-7

  54. 54. Shin, J.H., Bozadjieva-Kramer, N., Shao, Y., et al. (2022) The Gut Peptide Reg3g Links the Small Intestine Microbiome to the Regulation of Energy Balance, Glucose Levels, and Gut Function. Cell Metabolism, 34, 1765-1778.https://doi.org/10.1016/j.cmet.2022.09.024

  55. 55. Everard, A., Lazarevic, V., Gaïa, N., et al. (2014) Microbiome of Prebiotic-Treated Mice Reveals Novel Targets Involved in Host Response during Obesity. The ISME Journal, 8, 2116-2130. https://doi.org/10.1038/ismej.2014.45

  56. 56. Tremblay, S., Romain, G., Roux, M., et al. (2017) Bile Acid Administration Elicits an Intestinal Antimicrobial Program and Reduces the Bacterial Burden in Two Mouse Models of Enteric Infection. Infection and Immunity, 85, e00942-16. https://doi.org/10.1128/IAI.00942-16

  57. 57. Koehler, J.A., Baggio, L.L., Cao, X., et al. (2015) Glucagon-Like Peptide-1 Receptor agonists Increase Pancreatic Mass by Induction of Protein Synthesis. Diabetes, 64, 1046-1056. https://doi.org/10.2337/db14-0883

  58. 58. Xia, F., Cao, H., Du, J., et al. (2016) Reg3g Overexpression Promotes β Cell Regeneration and Induces Immune Tolerance in Nonobese-Diabetic Mouse Model. Journal of Leucocyte Biology, 99, 1131-1140.https://doi.org/10.1189/jlb.3A0815-371RRR

  59. 59. Takahashi, I., Noguchi, N., Nata, K., et al. (2009) Important Role of Heparan Sulfate in Postnatal Islet Growth and Insulin Secretion. Biochemical and Biophysical Research Communications, 383, 113-118.https://doi.org/10.1016/j.bbrc.2009.03.140

  60. 60. Chakkera, H.A., Kudva, Y. and Kaplan, B. (2017) Calcineurin Inhibitors: Pharmacologic Mechanisms Impacting Both Insulin Resistance and Insulin Secretion Leading to Glucose Dysregulation and Diabetes Mellitus. Clinical Pharmacology & Therapeutics, 101, 114-120. https://doi.org/10.1002/cpt.546

  61. 61. Li, S., Zhou, H., Xie, M., et al. (2022) Regenerating Islet-Derived Protein 3 Gamma (Reg3g) Ameliorates Tacrolimus-Induced Pancreatic β-Cell Dysfunction in Mice by Restoring Mitochondrial Function. British Journal of Pharmacology, 179, 3078-3095. https://doi.org/10.1111/bph.15803

  62. 62. Siddique, T. and Awan, F.R. (2016) Effects of Reg3 Delta Bioactive Peptide on Blood Glucose Levels and Pancreatic Gene Expression in an Alloxan-Induced Mouse Model of Diabetes. Canadian Journal of Diabetes, 40, 198-203.https://doi.org/10.1016/j.jcjd.2015.09.096

  63. 63. 庾璐婷, 杨孟奇, 王彤, 等. 重组Reg3α蛋白促进胰岛β细胞增殖活性及其机制的研究[J]. 药物生物技术, 2014, 21(6): 487-493.

期刊菜单