Advances in Clinical Medicine
Vol. 13  No. 09 ( 2023 ), Article ID: 72409 , 7 pages
10.12677/ACM.2023.1392032

动脉瘤性蛛网膜下腔出血中生物标志物相关 研究

张江成,刘波*,吐尔洪·吐尔逊

新疆医科大学第一附属医院重症医学三科,新疆 乌鲁木齐

收稿日期:2023年8月14日;录用日期:2023年9月8日;发布日期:2023年9月14日

摘要

动脉瘤性蛛网膜下腔出血在全世界范围均有较高的致死率和致残率,作为常见的收治重症监护室的病因,重症监护室的监测仪器能有效帮助医师发现患者病情变化,并及时做出干预措施,但以往的监测手段不能帮助改善患者的最终结局,我们需要发现新的监测手段来帮助临床干预病情改善结局。在这方面,生物标志物的探索是必要的,它有助于了解患者病情变化的生理机制,从而更有效地去改善重症患者结局,减轻家庭及社会的负担。

关键词

动脉瘤性蛛网膜下腔出血,生物标志物,病情评估

Correlation Study of Biomarkers in Aneurysmal Subarachnoid Hemorrhage

Jiangcheng Zhang, Bo Liu*, Tuerhong·Tuerxun

Third Department of Critical Care Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Aug. 14th, 2023; accepted: Sep. 8th, 2023; published: Sep. 14th, 2023

ABSTRACT

Aneurysmal subarachnoid hemorrhage has a high mortality and disability rate all over the world. As a common cause of admission to intensive care units, monitoring instruments in intensive care units can effectively help doctors find changes in patients’ conditions and make timely interventions. However, previous monitoring methods cannot improve the final outcome of patients. We need to find new monitoring methods to help clinical intervention to improve the outcome. In this regard, it is necessary to explore biomarkers, which will help to understand the physiological mechanism of patients’ condition changes, so as to improve the outcome of severe patients more effectively and reduce the burden on families and society.

Keywords:Aneurysmal Subarachnoid Hemorrhage, Biomarker, Disease Assessment

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 动脉瘤性蛛网膜下腔出血流行病学现况

动脉瘤性蛛网膜下腔出血(aSAH)占所有脑卒中事件的2%~7%,世界范围内平均每年每100,000人中就有6~9人受该病影响,但各国发病率差异较大,在中国的发病率估计为2/100,000 [1] 。同时该病死亡率较高,据统计北美的死亡率大约35%,世界范围内大约为20%~67%,只有不到三分之一的患者可以大致康复,超过20%的幸存者将患有长期甚至终身残疾或认知障碍等并发症 [2] [3] ,这将会对其家庭及社会造成严重的负担。

2. 动脉瘤性蛛网膜下腔出血病情监测方式现况

aSAH患者在入院处理完急性病变后,因随时可能因继发性脑损伤致死或致残,故需收治神经重症监护室(NCCU),而严密的病情监测手段对于患者后续的精准化及个体化治疗是必要的。神经重症监护多模态监测国际多学科共识会议上就提出了多模态监测(MMM),旨在发现和改善继发性脑损伤(SBI)和相关并发症以及在远期预后中期待见到更好的结局,虽然会议上表明MMM被广泛应用后指导的治疗改善了神经重症患者神经系统生理学变量,但最终临床结局没有明显改善 [4] [5] [6] ,所以我们希望发现更多的监测手段能帮助临床医师改善临床结局。

3. 生物标志物在动脉瘤性蛛网膜下腔出血病情监测中研究进展

随着生物信息学的发展,生物标志物在疾病的筛查、诊断、评估病情的变化预后等多个方面应用广泛 [7] ,比如血中肌钙蛋白水平的升高在不明病因的胸痛患者中鉴别诊断出急性心肌梗塞患者具有重大意义 [8] [9] ,血清肌酐水平对于评估肾功能不全患者的病情严重程度和预后也有极大的帮助 [10] [11] 。Sherry [12] [13] 等专家整理多项实验研究资料发现多种在脑卒中具有潜在价值的生物标志物,但目前还未有确定的生物标志物被国际共识认为核心推荐。所以对生物标志物与aSAH甚至其他脑卒中的研究具有重大意义,在未来有很大的探索空间。

3.1. 来源于中枢神经系统的生物标志物

3.1.1. S100β在动脉瘤性蛛网膜下腔出血中研究

1965年Moor首先阐述了S100钙结合蛋白B (S100β)是一种主要由星形胶质细胞所表达的钙结合蛋白等生物学性质。在随后不断地研究中,发现其与阿尔茨海默氏症、癫痫和肌萎缩侧索硬化症等神经系统疾病存在相关性 [14] 。而第一次研究S100β与aSAH的相关性的是Wiesmann [15] ,他通过病例对照研究发现S100β与早期神经功能受损有关。后Baptiste [16] 等人记录了符合纳入标准的81名患者入住ICU后S100β浓度变化过程,并将其与多种病情评估的评分量表绘制ROC曲线,发现第1日单独S100β的AUC均高于其他评分量表,该研究提出aSAH早期24小时内的S100β血清浓度具有一定诊断价值,可以预测严重的早期脑损伤(EBI)后果。也有研究表明发病初始血清S100β水平的阈值 > 0.7 μg/dl与患者的100%死亡率相关,以及S100β升高可能提示ICU相关不良结局的风险增加导致残疾、持续植物人状态或者死亡 [17] 。随后继续有人研究发现较高的血清S100β水平与迟发性脑梗死和更差的远期预后相关,但aSAH后继发性脑血管痉挛与S100β的相关性未明确 [14] [18] ,表现在不同S100β水平的aSAH患者发生脑血管痉挛不具有显著差异性。虽然S100β目前应用于临床评估脑损伤初期病情严重程度及预后,但仍存在争议,需要明确其在aSAH中的病理机制,发现其更多临床价值。

3.1.2. 神经元特异性烯醇化酶在动脉瘤性蛛网膜下腔出血中研究

神经元特异性烯醇化酶(NSE)是一种由神经元和周围神经内分泌细胞分泌的特有的酶,是糖酵解酶烯醇化酶的细胞特异性同工酶,在神经元细胞膜受损后释放通过血脑屏障入血并被检测到。有研究者将NSE与S100β进行比较在蛛网膜下腔出血(SAH)中的病情及预后评估价值,发现血清NSE预后评估价值低,且低于脑脊液NSE [19] 。之后继续有学者对NSE进行研究,发现血清NSE水平升高与脑损伤不良结局之间存在显著关联,并且尝试通过NSE水平预测SAH的早期死亡率和植物状态发生率,但很多对于NSE水平的研究基于aSAH临床分级情况,而对于目前aSAH的临床分级仍然是个争议性话题,故需要建立更好的模型来研究NSE在aSAH中的价值 [20] [21] [22] 。而最近一项回顾性研究则发现NSE.max < 26.255 μg/L的aSAH患者较超过该阈值的患者更能获得良好的预后结局 [23] 。对于NSE的研究仍然存在很多不足,需要发现并建立更好的临床模型。

3.1.3. 肌酸激酶-BB同工酶在动脉瘤性蛛网膜下腔出血中研究

肌酸激酶-BB同工酶(CK-BB)主要存在于大脑中,通常情况下不会出现于脑脊液中。当发生脑损伤后释放进入循环中,但在aSAH患者血清中检出率不高,并且在发病早期即出现浓度峰值,发现高水平血清CK-BB与高的死亡率可能有关 [24] [25] [26] 。Coplin [27] 在整合资料时表明脑脊液CK-BB水平越高,脑损伤越严重,预后越差,他在一项前瞻性研究中则发现脑脊液CK-BB水平越高与入院时较高的Hunt-Hess分级相关,脑脊液CK-BB水平 > 40 μg/L与出院时不良预后有关。因血清中的CK-BB出现时间不长,所以它的检测难度相对较高,暂用于入院病情及出院结局的评估。

3.1.4. 神经胶质原纤维酸性蛋白在动脉瘤性蛛网膜下腔出血中研究

神经胶质原纤维酸性蛋白(GFAP)是一种结构性胶质特异性蛋白,在星形胶质细胞、雪旺细胞和肠神经胶质细胞中。GFAP在中枢神经系统受损或神经变性后上调并释放到细胞外液中再进入循环 [28] 。早期对GFAP的研究是探讨鉴别缺血性卒中(IS)、脑出血(ICH)、蛛网膜下腔出血(SAH)和非卒中疾病能力,但因缺乏临床研究来明确GFAP的具体释放时间,所以鉴别能力待证实 [29] 。Katsanos [30] 等人再次通过临床病例对照观察发现脑出血(ICH)相比急性缺血性脑卒中(AIS)和其他急性神经系统疾病的血清GFAP水平明显较高,且在发病后的第二个小时内出现最佳的诊断率。最近的一项病例对照研究则揭示了GFAP高水平与aSAH患者的死亡率和不良结局相关,血清GFAP对30天死亡率和预后结局有一定预测能力 [31] ,但因受样本量限制,故需进一步临床研究验证其预测能力。

3.1.5. 神经丝亚基NF-H在动脉瘤性蛛网膜下腔出血中研究

神经丝亚基NF-H (pNF-H)与神经胶质原纤维酸性蛋白(GFAP)同是构成神经丝蛋白的成分,但经过重磷酸化对蛋白酶具有抗性(仅限于轴突),因此降低了对他检测的难度。Lewis [32] 等人通过监测aSAH患者诊疗期间神经丝亚基NF-H水平,发现高水平的神经丝亚基NF-H水平能显著预测不良结局,并且通过血管造影评估患者脑血管痉挛程度时,脑血管痉挛组的神经丝亚基NF-H水平明显高于没有血管痉挛组。因为对于神经丝亚基NF-H在aSAH中的临床研究不多,故需要更多的临床实验来验证它的价值。

3.1.6. 微管相关蛋白Tau在动脉瘤性蛛网膜下腔出血中研究

微管相关tau蛋白(MAP-tau)主要位于轴突隔室,tau蛋白病理性过度磷酸化在神经退行性疾病的发病机制中起重要作用(如阿尔兹海默症),它由6种tau亚型构成,创伤性脑损伤(TBI)可导致这六种亚型的蛋白水解裂解 [33] 。2014年有研究发现脑脊液中升高的微管相关蛋tau与aSAH患者长期结局相关,但是需要更多的样本进一步证实 [34] 。Joswig [35] 等人再次于2017年通过一项前瞻性研究发现在aSAH急性期检测到较高的tTau和pTau可能预示着不良的神经功能结局和较差的生活质量,并且神经原因导致的心理缺陷与脑脊液tTau和pTau浓度增加密切相关。

3.2. 来源于非神经系统的生物标志物

3.2.1. 炎症介质在动脉瘤性蛛网膜下腔出血中研究

因aSAH患者的神经功能恶化和不良结局与迟发性脑血管痉挛相关,Provencioa [35] 在整合资多项研究资料后提出发生在中枢神经系统内外的炎症反应与血管痉挛联系密切,但因炎症反应模式复杂,不能明确阐述炎症和血管痉挛的因果关系。对此多项独立研究提出了多种炎症介质生物标志物,如白细胞计数、肿瘤坏死因子α (TNF-α)、白细胞介素6 (IL-6)、血浆型凝胶索林(pGSN)和金属蛋白酶-9 (MMP-9)等。对于白细胞计数的研究发现早期白细胞水平的升高可能预测不良结局和病程中白细胞水平升高与脑血管痉挛相关 [36] [37] [39] [40] ,但白细胞计数升高缺乏特异性,另一方面为帮助寻找其下游的炎症介质生物标志物提供了方向。早期研究表明肿瘤坏死因子α (TNF-α)水平的升高与脑血管痉挛严重程度相,后继有人发现脑脊液中肿瘤坏死因子α的升高与脑水肿和急性脑积水相关 [41] ,但需要进一步研究其机制来验证。白细胞介素6 (IL-6)作为一种典型的炎症细胞因子,历来不乏对它的研究,均发现它与aSAH患者脑血管痉挛和远期结局相关 [42] [43] ,同时包括同一家族的IL-8、IL-10、IL-1α等研究,但因缺乏特异性等原因,目前仍需要强力证据支持它的临床意义。金属蛋白酶-9 (MMP-9)是一种由白细胞分泌的蛋白酶,可以分解血浆型凝胶索林(pGSN),而血浆型凝胶索林可以清除促炎信号来改善有害的炎症反应 [44] ,aSAH发病早期在脑脊液和血液中检测到血浆型凝胶索林降低和金属蛋白酶-9升高,考虑它们与aSAH患者的不良结局相关,因为目前对他们的研究尚不足,需要进一步明确机制证实其临床价值。

3.2.2. 血管活性分子在动脉瘤性蛛网膜下腔出血中研究

对于aSAH患者的神经功能结局和病死率,迟发性脑缺血(DCI)及脑梗死也是一项重要决定性因素,所以微血栓形成在迟发性脑缺血及脑梗死中发挥了什么作用,众多专家也展开了大量研究。血管性血友病因子(vWF)是一种多聚体蛋白,在止血中发挥重要作用。整合素养金属蛋白酶与凝血酶13型抗体(ADAMTS13)是一种血浆金属蛋白酶,它能降低vWF促血栓形成的能力,但也保持其止血活性 [45] 。近几年的研究则发现在aSAH后5~9天发生迟发性脑缺血患者相比未发生迟发性脑缺血患者血浆中的血管性血友病因子水平更高,ADAMTS13水平更低 [46] [47] ,但因为迟发性脑缺血发病机制尚有争议,所以需要更高质量的研究来验证vWF与迟发性脑缺血的相关性。此外一氧化氮(NO)作为脑血管张力和血流的重要调节因子,不对称二甲基精氨酸(ADMA)是一氧化氮合成的抑制剂,它的同源物对称二甲基精氨酸(SDMA)也能间接减少NO合成 [48] ,对于ADMA和SDMA也有相关研究。研究发现ADMA可能与迟发性脑缺血的发病率有关,SDMA与发病初期神经元损伤和不良的神经系统结局有关 [49] [50] ,考虑因为脑血管损伤导致ADMA和SDMA抑制了一氧化氮的生成,但仍需要大型队列进一步验证。

综上所述,我们发现以往的研究提出了很多与aSAH相关的有价值的生物标志物,同时近年也在探索新的标志物,但很多临床实验因为样本量的限制,而不能进行大型前瞻性研究进一步验证生物标志物,以及生物标本采集、储存和处理缺乏标准化,这也对生物标志物验证构成了障碍。生物标志物可以帮助临床医师对患者病情的风险预测和治疗优化,是SAH个性化和精准化治疗的重要工具和桥梁。aSAH的神经重症监护中非常重要,因为继发性脑损伤可能在几分钟内发生,导致死亡或严重残疾。然而,迄今为止,尚未使用明确的生物标志物去采取预防措施干预病情改善结局。数十年的研究表明,SAH相关的脑损伤涉及动态和许多相互关联的病理生理级联反应。现有的监测手段MMM仅能帮助改变生理学变量,我们迫切需要找到有价值的生物标志物,帮助改变最终结局。

文章引用

张江成,刘 波,吐尔洪·吐尔逊. 动脉瘤性蛛网膜下腔出血中生物标志物相关研究
Correlation Study of Biomarkers in Aneurysmal Subarachnoid Hemorrhage[J]. 临床医学进展, 2023, 13(09): 14536-14542. https://doi.org/10.12677/ACM.2023.1392032

参考文献

  1. 1. Rouanet, C. and Silva, G.S. (2019) Aneurysmal Subarachnoid Hemorrhage: Current Concepts and Updates. Arquivos de Neuro-Psiquiatria, 77, 806-814. https://doi.org/10.1590/0004-282x20190112

  2. 2. Neifert, S.N., Chapman, E.K., Martini, M.L., et al. (2021) Aneurysmal Subarachnoid Hemorrhage: The Last Decade. Translational Stroke Research, 12, 428-446. https://doi.org/10.1007/s12975-020-00867-0

  3. 3. English, S.W. (2020) Long-Term Outcome and Eco-nomic Burden of Aneurysmal Subarachnoid Hemorrhage: Are We Only Seeing the Tip of the Iceberg? Neurocritical Care, 33, 37-38. https://doi.org/10.1007/s12028-020-00943-1

  4. 4. Ruhatiya, R.S., Adukia, S.A., Manjunath, R.B. and Maheshwarappa, H.M. (2020) Current Status and Recommendations in Multimodal Neuromonitoring. Indian Jour-nal of Critical Care Medicine: Peer-Reviewed, Official Publication of Indian Society of Critical Care Medicine, 24, 353-360. https://doi.org/10.5005/jp-journals-10071-23431

  5. 5. Rivera Lara, L. and Püttgen, H.A. (2018) Multi-modality Monitoring in the Neurocritical Care Unit. Continuum, 24, 1776-1788. https://doi.org/10.1212/CON.0000000000000671

  6. 6. Makarenko, S., Griesdale, D.E., Gooderham, P. and Sekhon, M.S. (2016) Multimodal Neuromonitoring for Traumatic Brain Injury: A Shift towards Individualized Therapy. Journal of Clinical Neuroscience, 26, 8-13. https://doi.org/10.1016/j.jocn.2015.05.065

  7. 7. Aronson, J.K. and Ferner, R.E. (2017) Biomarkers—A General Review. Current Protocols in Pharmacology, 76, 9.23.1-9.23.17. https://doi.org/10.1002/cpph.19

  8. 8. Chauin, A. (2021) The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vascu-lar Health and Risk Management, 17, 601-617. https://doi.org/10.2147/VHRM.S327661

  9. 9. Kaier, T.E., Alaour, B. and Marber, M. (2021) Cardiac Troponin and Defining Myocardial Infarction. Cardiovascular Research, 117, 2203-2215. https://doi.org/10.1093/cvr/cvaa331

  10. 10. Levey, A.S., Coresh, J., Tighiouart, H., Greene, T. and Inker, L.A. (2020) Measured and Estimated Glomerular Filtration Rate: Current Status and Future Directions. Nature Reviews Nephrology, 16, 51-64. https://doi.org/10.1038/s41581-019-0191-y

  11. 11. Pinsino, A., Mondellini, G.M., Royzman, E.A., et al. (2020) Cystatin C- versus Creatinine-Based Assessment of Renal Function and Prediction of Early Outcomes among Patients with a Left Ventricular Assist Device. Circulation Heart Failure, 13, e006326. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006326

  12. 12. Chou, S.H. and Robertson, C.S. (2014) Moni-toring Biomarkers of Cellular Injury and Death in Acute Brain Injury. Neurocritical Care, 21, 187-214. https://doi.org/10.1007/s12028-014-0039-z

  13. 13. Chou, S.H., Macdonald, R.L. and Keller, E. (2019) Biospecimens and Molecular and Cellular Biomarkers in Aneurysmal Subarachnoid Hemorrhage Studies: Common Data Elements and Standard Reporting Recommendations. Neurocritical Care, 30, 46-59. https://doi.org/10.1007/s12028-019-00725-4

  14. 14. Lai, P.M. and Du, R. (2016) Association between S100B Levels and Long-Term Outcome after Aneurysmal Subarachnoid Hemorrhage: Systematic Review and Pooled Analysis. PLOS ONE, 11, e0151853. https://doi.org/10.1371/journal.pone.0151853

  15. 15. Wiesmann, M., Missler, U., Hagenström, H. and Gottmann, D. (1997) S-100 Protein Plasma Levels after Aneurysmal Subarachnoid Haemorrhage. Acta Neurochirurgica, 139, 1155-1160. https://doi.org/10.1007/BF01410976

  16. 16. Balança, B., Ritzenthaler, T., Gobert, F., et al. (2020) Sig-nificance and Diagnostic Accuracy of Early S100B Serum Concentration after Aneurysmal Subarachnoid Hemorrhage. Journal of Clinical Medicine, 9, Article 1746. https://doi.org/10.3390/jcm9061746

  17. 17. Kedziora, J., Burzynska, M., Gozdzik, W., et al. (2021) Biomarkers of Neurological Outcome after Aneurysmal Subarachnoid Hemorrhage as Early Predictors at Discharge from an Intensive Care Unit. Neurocritical Care, 34, 856-866. https://doi.org/10.1007/s12028-020-01110-2

  18. 18. Amiri, M., Astrand, R. and Romner, B. (2013) Can S100B Pre-dict Cerebral Vasospasms in Patients Suffering from Subarachnoid Hemorrhage? Frontiers in Neurology, 4, Article 65. https://doi.org/10.3389/fneur.2013.00065

  19. 19. Moritz, S., Warnat, J., Bele, S., et al. (2010) The Prognostic Value of NSE and S100B from Serum and Cerebrospinal Fluid in Patients with Spontaneous Subarachnoid Hemorrhage. Journal of Neurosurgical Anesthesiology, 22, 21-31. https://doi.org/10.1097/ANA.0b013e3181bdf50d

  20. 20. Tawk, R.G., Grewal, S.S., Heckman, M.G., et al. (2016) The Relationship between Serum Neuron-Specific Enolase Levels and Severity of Bleeding and Functional Outcomes in Patients with Nontraumatic Subarachnoid Hemorrhage. Neurosurgery, 78, 487-491. https://doi.org/10.1227/NEU.0000000000001140

  21. 21. Sahu, S., Nag, D.S., Swain, A. and Samaddar, D.P. (2017) Biochemical Changes in the Injured Brain. World Journal of Biological Chemistry, 8, 21-31. https://doi.org/10.4331/wjbc.v8.i1.21

  22. 22. Yuan, Y., Chen, J., Zhang, Y., et al. (2022) Exploration of Risk Factors for Poor Prognosis of Non-Traumatic Non-Aneurysmal Subarachnoid Hemorrhage. Biomolecules, 12, 948.

  23. 23. Zhao, H., Shang, F., Qi, M., et al. (2022) Related Factors and a Threshold of the Maximum Neuron-Specific Enolase Value Affecting the Prognosis of Patients with Aneurysmal Subarachnoid Hemorrhage. Applied Bionics and Biomechanics, 2022, Article ID: 7596426. https://doi.org/10.1155/2022/7596426

  24. 24. Kaste, M., Somer, H. and Konttinen, A. (1977) Brain-Type Creatine Kinase Isoenzyme. Occurrence in Serum in Acute Cerebral Disorders. Archives of Neurology, 34, 142-144. https://doi.org/10.1001/archneur.1977.00500150028004

  25. 25. Kettunen, P. (1983) Subarachnoid Haemorrhage and Acute Heart Injury. Clinica Chimica Acta, 134, 123-127. https://doi.org/10.1016/0009-8981(83)90190-0

  26. 26. Kloss, R., Keller, H.E., Stober, T., et al. (1985) [Creatine Ki-nase BB Activity in the Serum of Patients with Cerebrovascular Diseases]. Der Nervenarzt, 56, 417-422.

  27. 27. Coplin, W.M., Longstreth Jr, W.T., Lam, A.M., et al. (1999) Cerebrospinal Fluid Creatine Kinase-BB Isoenzyme Activity and Outcome after Subarachnoid Hemorrhage. Archives of Neurology, 56, 1348-1352. https://doi.org/10.1001/archneur.56.11.1348

  28. 28. Yang, Z. and Wang, K.K. (2015) Glial Fibrillary Acidic Protein: From Intermediate Filament Assembly and Gliosis to Neurobiomarker. Trends in Neurosciences, 38, 364-374. https://doi.org/10.1016/j.tins.2015.04.003

  29. 29. Schiff, L., Hadker, N., Weiser, S. and Rausch, C. (2012) A Litera-ture Review of the Feasibility of Glial Fibrillary Acidic Protein as a Biomarker for Stroke and Traumatic Brain Injury. Molecular Diagnosis & Therapy, 16, 79-92. https://doi.org/10.1007/BF03256432

  30. 30. Katsanos, A.H., Makris, K., Stefani, D., et al. (2017) Plasma Glial Fi-brillary Acidic Protein in the Differential Diagnosis of Intracerebral Hemorrhage. Stroke, 48, 2586-2588. https://doi.org/10.1161/STROKEAHA.117.018409

  31. 31. Gyldenholm, T., Hvas, C.L., Hvas, A.M. and Hviid, C.V.B. (2022) Serum Glial Fibrillary Acidic Protein (GFAP) Predicts Outcome after Intracerebral and Subarachnoid Hemorrhage. Neurological Sciences, 43, 6011-6019. https://doi.org/10.1007/s10072-022-06274-7

  32. 32. Lewis, S.B., Wolper, R.A., Miralia, L., Yang, C. and Shaw, G. (2008) Detection of Phosphorylated NF-H in the Cerebrospinal Fluid and Blood of Aneurysmal Subarachnoid Hemor-rhage Patients. Journal of Cerebral Blood Flow and Metabolism, 28, 1261-1271. https://doi.org/10.1038/jcbfm.2008.12

  33. 33. Kövesdi, E., Lückl, J., Bukovics, P., et al. (2010) Update on Protein Biomarkers in Traumatic Brain Injury with Emphasis on Clinical Use in Adults and Pediatrics. Acta Neurochirurgica, 152, 1-17. https://doi.org/10.1007/s00701-009-0463-6

  34. 34. Helbok, R., Schiefecker, A., Delazer, M., et al. (2015) Cerebral Tau Is Elevated after Aneurysmal Subarachnoid Haemorrhage and Associated with Brain Metabolic Distress and Poor Functional and Cognitive Long-Term Outcome. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 79-86. https://doi.org/10.1136/jnnp-2013-307326

  35. 35. Joswig, H., Korte, W., Früh, S., et al. (2018) Neurodegenerative Cerebrospinal Fluid Biomarkers Tau and Amyloid β Predict Functional, Quality of Life, and Neuropsychological Out-comes after Aneurysmal Subarachnoid Hemorrhage. Neurosurgical Review, 41, 605-614. https://doi.org/10.1007/s10143-017-0900-6

  36. 36. Provencio, J.J. (2013) Inflammation in Subarachnoid Hemorrhage and Delayed Deterioration Associated with Vasospasm: A Review. In: Zuccarello, M., Clark, J., Pyne-Geithman, G., Andaluz, N., Hartings, J. and Adeoye, O., Eds., Cerebral Vasospasm: Neurovascular Events after Subarachnoid Hem-orrhage, Springer, Vienna, 233-238. https://doi.org/10.1007/978-3-7091-1192-5_42

  37. 37. Al-Mufti, F., Misiolek, K.A., Roh, D., et al. (2019) White Blood Cell Count Improves Prediction of Delayed Cerebral Ischemia following Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 84, 397-403. https://doi.org/10.1093/neuros/nyy045

  38. 38. Geraghty, J.R., Lung, T.J., Hirsch, Y., et al. (2021) Systemic Im-mune-Inflammation Index Predicts Delayed Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage. Neuro-surgery, 89, 1071-1079. https://doi.org/10.1093/neuros/nyab354

  39. 39. Gusdon, A.M., Savarraj, J.P.J., Shihabeddin, E., et al. (2021) Time Course of Peripheral Leukocytosis and Clinical Outcomes after Aneurysmal Subarachnoid Hemorrhage. Frontiers in Neurology, 12, Article 694996. https://doi.org/10.3389/fneur.2021.694996

  40. 40. Ma, X., Lan, F. and Zhang, Y. (2021) Associations between C-Reactive Protein and White Blood Cell Count, Occurrence of Delayed Cerebral Ischemia and Poor Outcome following Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Acta Neurologica Belgica, 121, 1311-1324. https://doi.org/10.1007/s13760-020-01496-y

  41. 41. Lv, S.Y., Wu, Q., Liu, J.P., et al. (2018) Levels of Interleukin-1β, Interleukin-18, and Tumor Necrosis Factor-α in Cerebrospinal Fluid of Aneurysmal Subarachnoid Hemorrhage Patients May Be Predictors of Early Brain Injury and Clinical Prognosis. World Neurosurgery, 111, e362-e373. https://doi.org/10.1016/j.wneu.2017.12.076

  42. 42. Zeiler, F.A., Thelin, E.P., Czosnyka, M., et al. (2017) Cerebro-spinal Fluid and Microdialysis Cytokines in Aneurysmal Subarachnoid Hemorrhage: A Scoping Systematic Review. Frontiers in Neurology, 8, Article 379. https://doi.org/10.3389/fneur.2017.00379

  43. 43. Simon, M. and Grote, A. (2021) Interleukin 6 and Aneurysmal Subarachnoid Hemorrhage. A Narrative Review. International Journal of Molecular Sciences, 22, Article 4133. https://doi.org/10.3390/ijms22084133

  44. 44. Chou, S.H., Lo, E.H. and Ning, M. (2014) Plasma-Type Gelsolin in Subarachnoid Hemorrhage: Novel Biomarker Today, Therapeutic Target Tomorrow? Critical Care, 18, Article No. 101. https://doi.org/10.1186/cc13178

  45. 45. Kumar, M., Cao, W., Mcdaniel, J.K., et al. (2017) Plasma ADAMTS13 Ac-tivity and von Willebrand Factor Antigen and Activity in Patients with Subarachnoid Haemorrhage. Thrombosis and Haemostasis, 117, 691-699. https://doi.org/10.1160/TH16-11-0834

  46. 46. Boluijt, J., Meijers, J.C.M., Rinkel, G.J.E. and Di Vergouwen, M. (2015) Hemostasis and Fibrinolysis in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage: A Sys-tematic Review. Journal of Cerebral Blood Flow and Metabolism, 35, 724-733. https://doi.org/10.1038/jcbfm.2015.13

  47. 47. Wan, H., Wang, Y., Ai, J., et al. (2018) Role of von Willebrand Factor and ADAMTS-13 in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Thrombosis and Haemostasis, 16, 1413-1422. https://doi.org/10.1111/jth.14136

  48. 48. Bergström, A., Staalsø, J.M., Romner, B. and Olsen, N.V. (2014) Impaired Endothelial Function after Aneurysmal Subarachnoid Haemorrhage Correlates with Arginine: Asymmetric Dimethylarg-inine Ratio. British Journal of Anaesthesia, 112, 311-318. https://doi.org/10.1093/bja/aet331

  49. 49. Appel, D., Seeberger, M., Schwedhelm, E., et al. (2018) Asymmetric and Symmetric Dimethylarginines Are Markers of Delayed Cerebral Ischemia and Neurological Outcome in Patients with Subarachnoid Hemorrhage. Neurocritical Care, 29, 84-93. https://doi.org/10.1007/s12028-018-0520-1

  50. 50. Koch, M., Acharjee, A., Ament, Z., et al. (2021) Machine Learn-ing-Driven Metabolomic Evaluation of Cerebrospinal Fluid: Insights into Poor Outcomes after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 88, 1003-1011. https://doi.org/10.1093/neuros/nyaa557

  51. NOTES

    *通讯作者。

期刊菜单