﻿ 多素数哥德巴赫问题的一种分析 A kind of Analysis of the Multi-Prime Goldbach’s Issues

Pure Mathematics
Vol.07 No.04(2017), Article ID:21347,6 pages
10.12677/PM.2017.74037

A kind of Analysis of the Multi-Prime Goldbach’s Issues

Yunhua Cui

Unit95899, beijing

Received: Jun. 23rd, 2017; accepted: Jul. 6th, 2017; published: Jul. 13th, 2017

ABSTRACT

The applications of prime distribution theory with the new train of thought are researched upon prime groups with restraint. The minimum amounts of the multi-prime Goldbach's issues are deduced by expanding the analysis and conclusions in odd Goldbach’s prime groups.

Keywords:Prime Distribution, Goldbach's Conjecture, Odd Goldbach's Conjecture, Multi-Prime Goldbach’s Issue

95899部队，北京

Copyright © 2017 by author and Hans Publishers Inc.

1. 引言

2. 命题1：(多素数哥德巴赫命题)

(1)

(2)

(3)

(4)

1) 3素数推广到4素数

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

2) 4素数推广到任意素数

(15)

(16)

(17)

(18)

(19)

(20)

(21)

3. 实例2：(多素数哥德巴赫数组例)

(偶)或 (奇)，对应按式(21)计算出相应列入表2，表中同时列出自由度，渐近级数式首项阶数，相应由式(18)表示的最佳截断和渐近级数的有效项数

Table 1. The related parameters about the quantity limit of multi-prime propositions to logarithmic integral type and first expression

Table 2. The relational table between and

1)增大时，以对应的多素数组数求和代替对应的多素数组数求和造成的误差增大；增大时，每次递推以首阶代替各阶求和引进的误差增大，递推次数增多引起误差积累加大。因此较大时，数量下限将越发远离实际数量，但这并不影响数量下限的理论意义，它从数量的角度证明了多素数哥德巴赫数组的存在性，并给出任何情况下总能满足的下限数量。

2) 当逐步递增时，由于自由度加大，首先单调递增，直到对对应出现最大值，对对应出现最大值再增大时，由于自由度过大，可选择的组合数单调递减，直到对对应出现最小值；对对应出现最小值

A kind of Analysis of the Multi-Prime Goldbach’s Issues[J]. 理论数学, 2017, 07(04): 282-287. http://dx.doi.org/10.12677/PM.2017.74037

1. 1. 崔蕴华, 素数分布研究新思路的若干应用, 前沿科学, 2016, 10(4): 26-45.