Pure Mathematics
Vol. 09  No. 05 ( 2019 ), Article ID: 31492 , 9 pages
10.12677/PM.2019.95084

Matched Pair and Manin Triple of Hom-Malcev Algebra

Jinyuan Li

Liaoning Normal University, Dalian Liaoning

Received: Jul. 2nd, 2019; accepted: Jul. 22nd, 2019; published: Jul. 29th, 2019

ABSTRACT

In this paper, we study matched pair and Manin triple of Hom-Malcev algebra. First, we give the definition of matched pair of Hom-Malcev algebra and the method of getting a new Hom-Malcev algebra on the direct sum of two Hom-Malcev algebras, we also study the method of constructing a new Hom-Malcev algebra on the dual space of Hom-Malcev algebra. Then, we give the definition of Manin triple of Hom-Malcev algebra, and we give the relation between matched pair and Manin triple of Hom-Malcev algebra.

Keywords:Hom-Malcev Algebra, Matched Pair, Manin Triple

Hom-Malcev代数的配对和Manin Triple

李进圆

辽宁师范大学,辽宁 大连

收稿日期:2019年7月2日;录用日期:2019年7月22日;发布日期:2019年7月29日

摘 要

本文主要研究了Hom-Malcev代数的配对和Manin triple。首先给出Hom-Malcev代数的配对的定义以及在两个Hom-Malcev代数的直和上构造Hom-Malcev代数的方法,研究在Hom-Malcev代数的对偶空间上构造Hom-Malcev代数的方法。然后给出Hom-Malcev代数的Manin triple的定义,并给出Hom-Malcev代数的配对和Manin triple之间的关系。

关键词 :Hom-Malcev代数,配对,Manin Triple

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

作为李代数的推广,Malcev代数不仅和李代数之间存在着密切的联系,和交错代数之间也有着密切的关系。就像李群在单位元的切空间是李代数一样,局部解析的Moufang群的切空间也是一个Malcev代数 [1] 。在 [2] 中,作者不仅给出了Malcev代数的定义,还发现每一个交错代数都是可容许的Malcev代数。Hom-Malcev代数的定义是由Yau在 [3] 中给出的,并证明了每一个Hom-交错代数也都是可容许的Hom-Malcev代数。此后,许多学者对Hom-Malcev代数进行了研究,例如,在 [4] 中,作者证明了Hom-Malcev代数上的几个恒等式。在 [5] 中,作者研究了Hom-李代数上的Hom-Yang-Baxter方程以及Hom-李双代数。在 [6] 中,作者给出了Malcev代数上的Yang-Baxter方程以及Malcev双代数。因此,可以考虑的一个问题是在Hom-Malcev代数上是否也会存在类似于Hom-Yang-Baxter方程的方程以及Hom-Malcev双代数。

2. Hom-Malcev代数的定义和表示

定义2.1 [3] :设M是域F上的线性空间, α : M M 为代数同态,如果M中有二元双线性运算 [ ] : M × M M ,对于 x , y , z , w M ,有

[ x , y ] = [ y , x ] , (2.1)

α ( [ [ x , z ] , [ y , w ] ] ) = [ [ [ x , y ] , α ( z ) ] , α 2 ( w ) ] + [ [ [ y , z ] , α ( w ) ] , α 2 ( x ) ] + [ [ [ z , w ] , α ( x ) ] , α 2 ( y ) ] + [ [ [ w , x ] , α ( y ) ] , α 2 ( z ) ] , (2.2)

则称 ( M , [ ] , α ) 为域F上的Hom-Malcev代数。

定义2.2 [7] :设 ( M , [ ] , α ) 为Hom-Malcev代数,V为线性空间, ρ : M E n d ( V ) 为线性映射, σ E n d ( V ) ,如果对于 x , y , z M ,有

σ ( ρ ( x ) ) = ρ ( α ( x ) ) σ , (2.3)

σ ( ρ ( [ x , z ] ) ρ ( y ) ) ρ ( [ [ x , y ] , α ( z ) ] ) σ 2 + ρ ( α 2 ( x ) ) ρ ( [ y , z ] ) σ ρ ( α 2 ( y ) ) ρ ( α ( x ) ) ρ ( z ) + ρ ( α 2 ( z ) ) ρ ( α ( y ) ) ρ ( x ) = 0 , (2.4)

则称 ( ρ , V , σ ) ( M , [ ] , α ) 的表示。

定义2.3 [7] :设 ( M , [ ] , α ) 为Hom-Malcev代数, a d : M E n d ( M ) ( M , [ ] , α ) 的伴随表示,如果对于 x , y , z M ,有

α ( a d α ( x ) ) = a d x α , (2.5)

a d y ( a d [ x , z ] α ) + α 2 ( a d [ [ x , y ] , α ( z ) ] ) + α ( a d [ y , z ] ( a d α 2 ( x ) ) ) + a d z ( a d α ( x ) ( a d α 2 ( y ) ) ) a d x ( a d α ( y ) ( a d α 2 ( z ) ) ) = 0 , (2.6)

则称这个Hom-Malcev代数为相容的Hom-Malcev代数。

3. Hom-Malcev代数的配对

定义3.1:设 ( M 1 , [ ] 1 , α 1 ) ( M 2 , [ ] 2 , α 2 ) 为Hom-Malcev代数,若 ( ρ 1 , M 2 , α 2 ) ( ρ 2 , M 1 , α 1 ) 分别为 ( M 1 , [ ] 1 , α 1 ) ( M 2 , [ ] 2 , α 2 ) 的表示,对于 x 1 , y 1 , z 1 M 1 x 2 , y 2 , z 2 M 2 ,有

[ [ ρ 2 ( x 2 ) x 1 , α 1 ( y 1 ) ] 1 , α 1 2 ( z 1 ) ] 1 [ ρ 2 ( α 2 ( x 2 ) ) [ y 1 , z 1 ] 1 , α 1 2 ( x 1 ) ] 1 [ ρ 2 ( ρ 1 ( x 1 ) x 2 ) α 1 ( y 1 ) , α 1 2 ( z 1 ) ] 1 [ [ ρ 2 ( x 2 ) z 1 , α 1 ( x 1 ) ] 1 , α 1 2 ( y 1 ) ] 1 + ρ 2 ( ρ 1 ( α 1 ( y 1 ) ) ( ρ 1 ( x 1 ) x 2 ) ) α 1 2 ( z 1 ) + α 1 ( [ [ x 1 , z 1 ] 1 , ρ 2 ( x 2 ) y 1 ] 1 ) ρ 2 ( α 2 2 ( x 2 ) ) [ [ x 1 , y 1 ] 1 , α 1 ( z 1 ) ] 1 + α 1 ( ρ 2 ( ρ 1 ( y 1 ) x 2 ) [ x 1 , z 1 ] 1 ) + [ ρ 2 ( ρ 1 ( z 1 ) x 2 ) α 1 ( x 1 ) , α 1 2 ( y 1 ) ] 1 + ρ 2 ( ρ 1 ( [ y 1 , z 1 ] 1 ) α 2 ( x 2 ) ) α 1 2 ( x 1 ) ρ 2 ( ρ 1 ( α 1 ( x 1 ) ) ( ρ 1 ( z 1 ) x 2 ) ) α 1 2 ( y 1 ) = 0 , (3.1)

[ [ ρ 1 ( x 1 ) x 2 , α 2 ( y 2 ) ] 2 , α 2 2 ( z 2 ) ] 2 [ ρ 1 ( α 1 ( x 1 ) ) [ y 2 , z 2 ] 2 , α 2 2 ( x 2 ) ] 2 [ ρ 1 ( ρ 2 ( x 2 ) x 1 ) α 2 ( y 2 ) , α 2 2 ( z 2 ) ] 2 [ [ ρ 1 ( x 1 ) z 2 , α 2 ( x 2 ) ] 2 , α 2 2 ( y 2 ) ] 2 + ρ 1 ( ρ 2 ( α 2 ( y 2 ) ) ( ρ 2 ( x 2 ) x 1 ) ) α 2 2 ( z 2 ) + α 2 ( [ [ x 2 , z 2 ] 2 , ρ 1 ( x 1 ) y 2 ] 2 ) ρ 1 ( α 1 2 ( x 1 ) ) [ [ x 2 , y 2 ] 2 , α 2 ( z 2 ) ] 2 + [ ρ 1 ( ρ 2 ( z 2 ) x 1 ) α 2 ( x 2 ) , α 2 2 ( y 2 ) ] 2 + α 2 ( ρ 1 ( ρ 2 ( y 2 ) x 1 ) [ x 2 , z 2 ] 2 ) + ρ 1 ( ρ 2 ( [ y 2 , z 2 ] 2 ) α 1 ( x 1 ) ) α 2 2 ( x 2 ) ρ 1 ( ρ 2 ( α 2 ( x 2 ) ) ( ρ 2 ( z 2 ) x 1 ) ) α 2 2 ( y 2 ) = 0 , (3.2)

ρ 2 ( ρ 1 ( α 1 ( x 1 ) ) [ x 2 , y 2 ] 2 ) α 1 2 ( y 1 ) α 1 ( ρ 2 ( ρ 1 ( x 1 ) x 2 ) ( ρ 2 ( y 2 ) y 1 ) ) + ρ 2 ( α 2 2 ( x 2 ) ) [ ρ 2 ( y 2 ) ( x 1 ) , α 1 ( y 1 ) ] 1 [ ρ 2 ( α 2 ( y 2 ) ) ( ρ 2 ( x 2 ) y 1 ) , α 1 2 ( x 1 ) ] 1 [ ρ 2 ( [ x 2 , y 2 ] 2 ) α 1 ( x 1 ) , α 1 2 ( y 1 ) ] 1 + α 1 ( ρ 2 ( ρ 1 ( y 1 ) y 2 ) ( ρ 2 ( x 2 ) x 1 ) ) ρ 2 ( [ ρ 1 ( y 1 ) x 2 , α 2 ( y 2 ) ] 2 ) α 1 2 ( x 1 ) ρ 2 ( α 2 2 ( y 2 ) ) ( ρ 2 ( α 2 ( x 2 ) ) [ x 1 , y 1 ] 1 ) + α 1 ( [ ρ 2 ( x 2 ) x 1 , ρ 2 ( y 2 ) y 1 ] 1 ) ρ 2 ( α 2 2 ( x 2 ) ) ( ρ 2 ( ρ 1 ( x 1 ) y 2 ) α 1 ( y 1 ) ) + ρ 2 ( ρ 1 ( ρ 2 ( x 2 ) y 1 ) α 2 ( y 2 ) ) α 1 2 ( x 1 ) = 0 , (3.3)

ρ 1 ( ρ 2 ( α 2 ( x 2 ) ) [ x 1 , y 1 ] 1 ) α 2 2 ( y 2 ) α 2 ( ρ 1 ( ρ 2 ( x 2 ) x 1 ) ( ρ 1 ( y 1 ) y 2 ) ) + ρ 1 ( α 1 2 ( x 1 ) ) [ ρ 1 ( y 1 ) x 2 , α 2 ( y 2 ) ] 2 [ ρ 1 ( α 1 ( y 1 ) ) ( ρ 1 ( x 1 ) y 2 ) , α 2 2 ( x 2 ) ] 2 [ ρ 1 ( [ x 1 , y 1 ] 1 ) α 2 ( x 2 ) , α 2 2 ( y 2 ) ] 2 + α 2 ( ρ 1 ( ρ 2 ( y 2 ) y 1 ) ( ρ 1 ( x 1 ) x 2 ) ) ρ 1 ( [ ρ 2 ( y 2 ) x 1 , α 1 ( y 1 ) ] 1 ) α 2 2 ( x 2 ) ρ 1 ( α 1 2 ( y 1 ) ) ( ρ 1 ( α 1 ( x 1 ) ) [ x 2 , y 2 ] 2 ) + α 2 ( [ ρ 1 ( x 1 ) x 2 , ρ 1 ( y 1 ) y 2 ] 2 ) ρ 1 ( α 1 2 ( x 1 ) ) ( ρ 1 ( ρ 2 ( x 2 ) y 1 ) α 2 ( y 2 ) ) + ρ 1 ( ρ 2 ( ρ 1 ( x 1 ) y 2 ) α 1 ( y 1 ) ) α 2 2 ( x 2 ) = 0 , (3.4)

ρ 2 ( α 2 2 ( x 2 ) ) [ ρ 2 ( y 2 ) y 1 , α 1 ( x 1 ) ] 1 ρ 2 ( [ ρ 1 ( x 1 ) y 2 , α 2 ( x 2 ) ] 2 ) α 1 2 ( y 1 ) [ ρ 2 ( α 2 ( x 2 ) ) ( ρ 2 ( y 2 ) x 1 ) , α 1 2 ( y 1 ) ] 1 + ρ 2 ( α 2 2 ( y 2 ) ) [ ρ 2 ( x 2 ) x 1 , α 1 ( y 1 ) ] 1 [ ρ 2 ( α 2 ( y 2 ) ) ( ρ 2 ( x 2 ) y 1 ) , α 1 2 ( x 1 ) ] 1 ρ 2 ( [ ρ 1 ( y 1 ) x 2 , α 2 ( y 2 ) ] 2 ) α 1 2 ( x 1 ) ρ 2 ( α 2 2 ( y 2 ) ) ( ρ 2 ( ρ 1 ( x 1 ) x 2 ) α 1 ( y 1 ) ) ρ 2 ( α 2 2 ( x 2 ) ) ( ρ 2 ( ρ 1 ( y 1 ) y 2 ) α 1 ( x 1 ) ) + α 1 ( ρ 2 ( [ x 2 , y 2 ] 2 ) [ x 1 , y 1 ] 1 ) + ρ 2 ( ρ 1 ( ρ 2 ( x 2 ) y 1 ) α 2 ( y 2 ) ) α 1 2 ( x 1 ) + ρ 2 ( ρ 1 ( ρ 2 ( y 2 ) x 1 ) α 2 ( x 2 ) ) α 1 2 ( y 1 ) = 0 , (3.5)

ρ 1 ( α 1 2 ( x 1 ) ) [ ρ 1 ( y 1 ) y 2 , α 2 ( x 2 ) ] 2 ρ 1 ( [ ρ 2 ( x 2 ) y 1 , α 1 ( x 1 ) ] 1 ) α 2 2 ( y 2 ) [ ρ 1 ( α 1 ( x 1 ) ) ( ρ 1 ( y 2 ) x 2 ) , α 2 2 ( y 2 ) ] 2 + ρ 1 ( α 1 2 ( y 1 ) ) [ ρ 1 ( x 1 ) x 2 , α 2 ( y 2 ) ] 2 [ ρ 1 ( α 1 ( y 1 ) ) ( ρ 1 ( x 1 ) y 2 ) , α 2 2 ( x 2 ) ] 2 ρ 1 ( [ ρ 2 ( y 2 ) x 1 , α 1 ( y 1 ) ] 1 ) α 2 2 ( x 2 ) ρ 1 ( α 1 2 ( y 1 ) ) ( ρ 1 ( ρ 2 ( x 2 ) x 1 ) α 2 ( y 2 ) ) ρ 1 ( α 1 2 ( x 1 ) ) ( ρ 1 ( ρ 2 ( y 2 ) y 1 ) α 2 ( x 2 ) ) + α 2 ( ρ 1 ( [ x 1 , y 1 ] 1 ) [ x 2 , y 2 ] 2 ) + ρ 1 ( ρ 2 ( ρ 1 ( x 1 ) y 2 ) α 1 ( y 1 ) ) α 2 2 ( x 2 ) + ρ 1 ( ρ 2 ( ρ 1 ( y 1 ) x 2 ) α 1 ( x 1 ) ) α 2 2 ( y 2 ) = 0 , (3.6)

则称 ( M 1 , M 2 , ρ 1 , ρ 2 ) 为这两个Hom-Malcev代数的配对。

定理3.2:设 ( M 1 , [ ] 1 , α 1 ) ( M 2 , [ ] 2 , α 2 ) 为Hom-Malcev代数, ρ 1 : M 1 E n d ( M 2 ) ρ 2 : M 2 E n d ( M 1 ) 为线性映射,在 M 1 M 2 上定义二元反对称双线性运算 [ ] : ( M 1 M 2 ) × ( M 1 M 2 ) ( M 1 M 2 ) ,对于 x 1 , y 1 M 1 , x 2 , y 2 M 2 ,有

[ x 1 + x 2 , y 1 + y 2 ] = [ x 1 , y 1 ] 1 + ρ 2 ( x 2 ) y 1 ρ 2 ( y 2 ) x 1 + [ x 2 , y 2 ] 2 + ρ 1 ( x 1 ) y 2 ρ 1 ( y 1 ) x 2 ,

并定义

( M 1 M 2 , [ ] , α 1 + α 2 ) 为Hom-Malcev代数当且仅当 ( M 1 , [ ] 1 , α 1 ) ( M 2 , [ ] 2 , α 2 ) 这两个Hom-Malcev代数的配对。

证明: ( M 1 M 2 , [ ] , α 1 + α 2 ) 为Hom-Malcev代数当且仅当对于 x 1 , y 1 , z 1 , w 1 M 1 x 2 , y 2 , z 2 , w 2 M 2

( α 1 + α 2 ) ( [ x 1 + x 2 , y 1 + y 2 ] ) = [ ( α 1 + α 2 ) ( x 1 + x 2 ) , ( α 1 + α 2 ) ( y 1 + y 2 ) ] , (3.7)

( α 1 + α 2 ) ( [ [ x 1 + x 2 , z 1 + z 2 ] , [ y 1 + y 2 , w 1 + w 2 ] ] ) = [ [ [ x 1 + x 2 , y 1 + y 2 ] , ( α 1 + α 2 ) ( z 1 + z 2 ) ] , ( α 1 + α 2 ) 2 ( w 1 + w 2 ) ] + [ [ [ y 1 + y 2 , z 1 + z 2 ] , ( α 1 + α 2 ) ( w 1 + w 2 ) ] , ( α 1 + α 2 ) 2 ( x 1 + x 2 ) ] + [ [ [ z 1 + z 2 , w 1 + w 2 ] , ( α 1 + α 2 ) ( x 1 + x 2 ) ] , ( α 1 + α 2 ) 2 ( y 1 + y 2 ) ] + [ [ [ w 1 + w 2 , x 1 + x 2 ] , ( α 1 + α 2 ) ( y 1 + y 2 ) ] , ( α 1 + α 2 ) 2 ( z 1 + z 2 ) ] (3.8)

成立。

(3.7)成立等价于(2.3)成立,(3.8)成立等价于这16种情况下(3.8)成立:

1) x 2 , y 2 , z 2 , w 2 M 2 x 1 = y 1 = z 1 = w 1 = 0

2) w 1 M 1 x 2 , y 2 , z 2 M 2 x 1 = y 1 = z 1 = w 2 = 0

3) z 1 M 1 x 2 , y 2 , w 2 M 2 x 1 = y 1 = z 2 = w 1 = 0

4) z 1 , w 1 M 1 x 2 , y 2 M 2 x 1 = y 1 = z 2 = w 2 = 0

5) y 1 M 1 x 2 , z 2 , w 2 M 2 x 1 = y 2 = z 1 = w 1 = 0

6) y 1 , w 1 M 1 x 2 , z 2 M 2 x 1 = y 2 = z 1 = w 2 = 0

7) y 1 , z 1 M 1 x 2 , w 2 M 2

8) y 1 , z 1 , w 1 M 1 x 2 M 2 x 1 = y 2 = z 2 = w 2 = 0

9) x 1 M 1 y 2 , z 2 , w 2 M 2 x 2 = y 1 = z 1 = w 1 = 0

10) x 1 , w 1 M 1 y 2 , z 2 M 2 x 2 = y 1 = z 1 = w 2 = 0

11) x 1 , z 1 M 1 y 2 , w 2 M 2 x 2 = y 1 = z 2 = w 1 = 0

12) x 1 , z 1 , w 1 M 1 y 2 M 2

13) x 1 , y 1 M 1 z 2 , w 2 M 2

14) x 1 , y 1 , w 1 M 1 z 2 M 2 x 2 = y 2 = z 1 = w 2 = 0

15) x 1 , y 1 , z 1 M 1 w 2 M 2

16) x 1 , y 1 , z 1 , w 1 M 1 x 2 = y 2 = z 2 = w 2 = 0

其中,情况1)下(3.8)成立 ( M 2 , [ ] 2 , α 2 ) 为Hom-Malcev代数,情况2) 3) 5) 9)下(3.8)成立 (2.4) (3.1)成立,情况8) 12) 14) 15)下(3.8)成立 (2.4) (3.2)成立,情况4) 7) 10) 13)下(3.8)成立 (3.3) (3.4)成立,情况6) 11)下(3.8)成立 (3.5) (3.6)成立,情况16)下(3.8)成立 ( M 1 , [ ] 1 , α 1 ) 为Hom-Malcev代数。

定理3.3:设 ( M , [ ] M , α ) 为Hom-Malcev代数, Δ : M M M 为线性映射,在 M * 上定义 [ a * , b * ] M * = Δ * ( a * b * ) ( a * , b * M * ),则

1) ( M * , [ ] M * , α * ) 为Hom-Malcev代数当且仅当 Δ 满足以下两个条件:

Δ = τ Δ , (3.9)

( 1 τ 1 ) ( Δ Δ ) Δ α = ( Δ α 1 ) ( Δ α 2 ) Δ + ( 1 1 τ ) ( 1 τ 1 ) ( τ 1 1 ) ( Δ α 1 ) ( Δ α 2 ) Δ + ( 1 τ 1 ) ( τ 1 1 ) ( 1 1 τ ) ( 1 τ 1 ) ( Δ α 1 ) ( Δ α 2 ) Δ + ( τ 1 1 ) ( 1 τ 1 ) ( 1 1 τ ) ( Δ α 1 ) ( Δ α 2 ) Δ , (3.10)

2) ( M * , [ ] M * , α * ) 为相容的Hom-Malcev代数当且仅当 Δ 满足(2.9)和(2.10)且

( α 1 ) Δ α = ( 1 α ) Δ , (3.11)

(3.12)

证明:1) ( M * , [ ] M * , α * ) 为Hom-Malcev代数当且仅当对于 a * , b * , c * , d * M *

[ a * , b * ] M * = [ b * , a * ] M * ,

α * ( [ [ a * , c * ] M * , [ b * , d * ] M * ] M * ) = [ [ [ a * , b * ] M * , α * ( c * ) ] M * , α 2 ( d ) ] M * + [ [ [ d * , a * ] M * , α * ( b * ) ] M * , α 2 ( c ) ] M * + [ [ [ b * , c * ] M * , α * ( d * ) ] M * , α 2 ( a ) ] M * + [ [ [ c * , d * ] M * , α * ( a * ) ] M * , α 2 ( b ) ] M *

成立。因此, x M

[ a * , b * ] M * + [ b * , a * ] M * , x = 0 a * b * , Δ ( x ) + τ ( a * b * ) , Δ ( x ) = 0

等价于(3.9)成立。

α * ( [ [ a * , c * ] M * , [ b * , d * ] M * ] M * ) [ [ [ a * , b * ] M * , α * ( c * ) ] M * , α 2 ( d ) ] M * [ [ [ d * , a * ] M * , α * ( b * ) ] M * , α 2 ( c ) ] M * + [ [ [ b * , c * ] M * , α * ( d * ) ] M * , α 2 ( a ) ] M * + [ [ [ c * , d * ] M * , α * ( a * ) ] M * , α 2 ( b ) ] M * , x = 0

a * c * b * d * , ( Δ Δ ) Δ ( α ( x ) ) a * b * c * d * , ( Δ α 1 ) ( Δ α 2 ) Δ ( x ) b * c * d * a * , ( Δ α 1 ) ( Δ α 2 ) Δ ( x ) c * d * a * b * , ( Δ α 1 ) ( Δ α 2 ) Δ ( x ) d * a * b * c * , ( Δ α 1 ) ( Δ α 2 ) Δ ( x ) = 0

等价于(3.10)成立。

2) ( M * , [ ] M * , α * ) 为相容的Hom-Malcev代数当且仅当1)且对于 a * , b * , c * , d * M *

α * ( a d M * α * ( a * ) ( b * ) ) = a d M * a * ( α * ( b * ) )

a d M * b * ( a d M * [ a * , c * ] M * ( α * ( d * ) ) ) a d M * a * ( a d M * α * ( b * ) ( a d M * α 2 ( c * ) ( d * ) ) ) + α * ( a d M * [ b * , c * ] M * ( a d M * α 2 ( a * ) ( d * ) ) ) + a d M * c * ( a d M * α * ( a * ) ( a d M * α 2 ( b * ) ( d * ) ) ) + α 2 ( a d M * [ [ a * , b * ] M * , α * ( c * ) ] M * ( d * ) ) = 0

成立。因此,

α * ( a d M * α * ( a * ) ( b * ) ) a d M * a * ( α * ( b * ) ) , x = 0 [ α * ( a * ) , b * ] M * , α ( x ) [ a * , α * ( b * ) ] M * , x = 0

等价于(3.11)成立。

a d M * b * ( a d M * [ a * , c * ] M * ( α * ( d * ) ) ) a d M * a * ( a d M * α * ( b * ) ( a d M * α 2 ( c * ) ( d * ) ) ) + α * ( a d M * [ b * , c * ] M * ( a d M * α 2 ( a * ) ( d * ) ) ) + a d M * c * ( a d M * α * ( a * ) ( a d M * α 2 ( b * ) ( d * ) ) ) + α 2 ( a d M * [ [ a * , b * ] M * , α * ( c * ) ] M * ( d * ) ) , x = 0

b * a * c * d * , ( 1 Δ α ) ( 1 Δ ) Δ ( x ) + c * a * b * d * , ( 1 1 α 2 1 ) ( 1 α Δ ) ( 1 Δ ) Δ ( x ) + b * c * a * d * , ( 1 1 α 2 1 ) ( Δ Δ ) Δ ( α ( x ) ) + a * b * c * d * , ( Δ α 1 ) ( Δ 1 ) Δ ( α 2 ( x ) ) a * b * c * d * , ( 1 1 α 2 1 ) ( 1 α Δ ) ( 1 Δ ) Δ ( x ) = 0

等价于(3.12)成立。

定理3.4:设 ( M , [ ] M , α ) 为相容的Hom-Malcev代数,线性映射 Δ : M M M 满足(3.9)~(3.12),在 M M * 上定义二元反对称双线性运算 [ ] : ( M M * ) × ( M M * ) ( M M * ) ,对于 x , y M a * , b * M * ,有

[ x + a * , y + b * ] = [ x , y ] M + a d M * * ( a * ) y a d M * * ( b * ) x + [ a * , b * ] M * + a d M * * ( x ) b * a d M * * ( y ) a * ,

并定义

( α + α * ) ( x + a * ) = α ( x ) + α * ( a * ) ,

是Hom-Malcev代数当且仅当对于 x , y , z , M a * , b * , c * M * Δ 满足

( α 1 ) ( a d M [ y , z ] M 1 ) Δ ( α 2 ( x ) ) ( 1 a d M α 2 ( z ) ) ( 1 a d M α ( y ) ) Δ ( x ) + ( a d M y α ) Δ ( [ x , z ] M ) + ( 1 a d M α 2 ( y ) ) ( 1 a d M α ( x ) ) Δ ( z ) + ( α 2 1 ) Δ [ [ x , y ] M , α ( z ) ] M ( α a d M α 2 ( x ) ) Δ ( [ y , z ] M ) ( 1 α ) ( 1 a d M [ x , z ] M ) Δ ( y ) ( a d M z a d M α 2 ( y ) ) Δ ( α ( x ) ) + ( a d M x a d M α 2 ( z ) ) Δ ( α ( y ) ) ( a d M x 1 ) ( a d M α ( y ) 1 ) Δ ( α 2 ( z ) ) + ( a d M z 1 ) ( a d M α ( x ) 1 ) Δ ( α 2 ( y ) ) = 0 , (3.13)

(3.14)

b * c * , ( α 2 1 ) Δ ( a d M * * α * ( a * ) ( [ x , y ] M ) ) b * c * , ( 1 α ) ( 1 a d M ( a d M * * α * ( x ) ) ) Δ ( y ) + b * c * , ( a d M y α ) Δ ( a d M * * α * ( x ) ) b * c * , ( α 1 ) ( a d M * * ( a d M * y ( a * ) ) 1 ) Δ ( α 2 ( x ) ) b * c * , ( a d M * * a * 1 ) ( a d M α ( x ) 1 ) Δ ( α 2 ( y ) ) + b * c * , ( a d M * * a * a d M α 2 ( y ) ) Δ ( α ( x ) ) b * c * , ( a d M x a d M * * α 2 ( a * ) ) Δ ( α ( y ) ) + b * c * , ( 1 α ) ( 1 a d M * * ( a d M * x ( a * ) ) ) Δ ( y ) b * c * , ( α a d M α 2 ( x ) ) Δ ( a d M * * a * ( y ) ) + b * c * , ( 1 a d M * * α 2 ( a * ) ) ( 1 a d M α ( y ) ) Δ ( x ) + b * c * , ( α 1 ) ( a d M ( a d M * * a * ( y ) ) 1 ) Δ ( α 2 ( x ) ) = 0 , (3.15)

y z , ( a d M * x a d M * α 2 ( b * ) ) Δ * ( α * ( a * ) ) y z , ( 1 α * ) ( 1 a d M * ( a d M * x ( a * ) ) ) Δ * ( b * ) + y z , ( a d M * b * α * ) Δ * ( a d M * x ( a * ) ) y z , ( α * 1 ) ( a d M * ( a d M * * b * ( x ) ) 1 ) Δ * ( α 2 ( a * ) ) y z , ( a d M * a * a d M * α 2 ( x ) ) Δ * ( α * ( b * ) ) + y z , ( 1 α * ) ( 1 a d M * ( a d M * * a * ( x ) ) ) Δ * ( b * ) y z , ( a d M * x 1 ) ( a d M * α * ( a * ) 1 ) Δ * ( α 2 ( b * ) ) + y z , ( α 2 1 ) Δ * ( a d M * α ( x ) ( [ a * , b * ] M * ) ) y z , ( a d M * x 1 ) ( a d M * α * ( a * ) 1 ) Δ * ( α 2 ( b * ) ) + y z , ( α 2 1 ) Δ * ( a d M * α ( x ) ( [ a * , b * ] M * ) ) + y z , ( α * 1 ) ( a d M * ( a d M * x ( b * ) ) 1 ) Δ * ( α 2 ( a * ) ) = 0 , (3.16)

a * b * , ( α 2 1 ) ( a d M * * c * 1 ) ( a d M α ( x ) 1 ) Δ ( y ) a * b * , ( α 2 1 ) ( a d M * * c * a d M y ) Δ ( α ( x ) ) a * b * , ( a d M y α ) Δ ( a d M * * c * ( α 2 ( x ) ) ) a * b * , ( 1 α 2 ) ( 1 a d M * * c * ) ( 1 a d M α ( y ) ) Δ ( x ) + a * b * , ( 1 α 2 ) ( a d M x a d M * * c * ) Δ ( α ( y ) ) a * b * , ( α 1 ) ( a d M ( a d M * * c * ( α 2 ( y ) ) ) 1 ) Δ ( x ) + a * b * , ( 1 α ) ( 1 a d M ( a d M * * c * ( α 2 ( x ) ) ) ) Δ ( y ) + a * b * , ( α a d M x ) Δ ( a d M * * c * ( α 2 ( y ) ) ) + a * b * , ( α 1 ) ( a d M * * ( a d M * α 2 ( y ) ( c * ) ) 1 ) Δ ( x ) a * b * , Δ ( a d M * * α * ( c * ) ( [ x , y ] M ) ) a * b * , ( 1 α ) ( 1 a d M * * ( a d M * α 2 ( x ) ( c * ) ) ) Δ ( y ) = 0 , (3.17)

x y , ( α 2 1 ) ( a d M * z 1 ) ( a d M * α * ( a * ) 1 ) Δ * ( b * ) x y , ( α 2 1 ) ( a d M * z a d M * b * ) Δ * ( α * ( a * ) ) x y , ( a d M * b * α * ) Δ * ( a d M * z ( α 2 ( a * ) ) ) x y , ( 1 α 2 ) ( 1 a d M * z ) ( 1 a d M * α * ( b * ) ) Δ * ( a * ) + x y , ( 1 α 2 ) ( a d M * a * a d M * z ) Δ * ( α * ( b * ) ) x y , ( α * 1 ) ( a d M * ( a d M * z ( α 2 ( b * ) ) ) 1 ) Δ * ( a * ) + x y , ( α * 1 ) ( a d M * ( a d M * * α 2 ( b * ) ( z ) ) 1 ) Δ * ( a * ) + x y , ( α * a d M * a * ) Δ * ( a d M * z ( α 2 ( b * ) ) ) + x y , ( 1 α * ) ( 1 a d M * ( a d M * z ( α 2 ( a * ) ) ) ) Δ * ( b * ) x y , Δ * ( a d M * α ( z ) ( [ a * , b * ] M * ) ) x y , ( 1 α * ) ( 1 a d M * ( a d M * * α 2 ( a * ) ( z ) ) ) Δ * ( b * ) = 0 , (3.18)

证明:由定理3.2可知, ( M M * , [ ] , α + α * ) 是Hom-Malcev代数当且仅当 ( M , M * , a d M * , a d M * * ) ( M , [ ] M , α ) ( M * , [ ] M * , α * ) 这两个Hom-Malcev代数的配对,当且仅当 x , y , z , M 满足(3.1)~(3.6)即可。

定义3.5:设 ( M , [ ] M , α ) 为相容的Hom-Malcev代数, Δ : M M M 为线性映射,若 Δ 满足(3.9)~(3.18),则称 ( M , M * , Δ ) 为Hom-Malcev双代数。

4. Hom-Malcev代数的Manin triple

定义4.1:设 ( M , [ ] , α ) 是Hom-Malcev代数,若 M + M 都为M的子代数, M = M + + M ,M上存在一个非退化的、对称的双线性函数 B ( , ) 保持不变性,即 x , y , z M ,有

B ( [ x , y ] , z ) = B ( x , [ y , z ] ) , (4.1)

(4.2)

M + M 关于 B ( , ) 都是迷向的,即 B ( M + , M + ) = B ( M , M ) = 0 ,则称 ( M , M + , M ) 为Hom-Malcev代数 ( M , [ ] , α ) 的Manin triple。

定理4.2:设 ( M , [ ] M , α ) ( M * , [ ] M * , α * ) 为相容的Hom-Malcev代数, B ( , ) M M * 上的双线性函数, B ( x + a * , y + b * ) = x , b * + y , a * ,在 M M * 上定义运算

[ x + a * , y + b * ] = [ x , y ] M + a d M * x ( b * ) a d M * y ( a * ) + [ a * , b * ] M * + a d M * * a * ( y ) a d M * * b * ( x ) ,

并定义

其中, x , y M a * , b * M * ,则 ( M , M * , a d M * , a d M * * ) 是Hom-Malcev代数的配对的充分必要条件为 ( M M * , M , M * ) 是Hom-Malcev代数的Manin triple。

证明:必要性。根据定理3.2可知,若 ( M , M * , a d M * , a d M * * ) 是配对,则 ( M M * , [ ] , α + α * ) 是Hom-Malcev代数。显然, ( M * , [ ] M * , α * ) 都为 ( M M * , [ ] , α + α * ) 的子代数。

y + b * M M * ,取 x + a * M M * ,若 B ( x + a * , y + b * ) = 0 ,则当 b * = 0 时,

B ( x + a * , y ) = x , 0 + y , a * = 0 + y , a * = 0 ,

可以得到 a * = 0 。同理,当 y = 0 时,可以得到,因此 x + a * = 0 B ( , ) 是非退化的。

B ( x + a * , y + b * ) = x , b * + y , a * = y , a * + x , b * = B ( y + b * , x + a * ) ,

可知 B ( , ) 是对称的。

B ( [ x + a * , y + b * ] , z + c * ) B ( x + a * , [ y + b * , z + c * ] ) = [ x , y ] M , c * + a d M * * a * ( y ) , c * a d M * * b * ( x ) , c * + [ a * , b * ] M * , z + a d M * x ( b * ) , z a d M * y ( a * ) , z x , [ b * , c * ] M * x , a d M * y ( c * ) + x , a d M * z ( b * ) a * , [ b * , c * ] M * a * , a d M * * b * ( z ) + a * , a d M * * c * ,

a d M * * a * ( y ) , c * = y , a d M * a * ( c * ) = y , [ a * , c * ] M * ,可知(4.1)成立。

B ( ( α + α * ) ( x + a * ) , y + b * ) B ( x + a * , ( α + α * ) ( y + b * ) ) = α ( x ) , b * + α * ( a * ) , y x , α * ( b * ) a * , α ( y )

α ( x ) , b * = x , α * ( b * ) ,可知(4.2)成立。因此, B ( , ) 是不变的。

B ( x , y ) = B ( x + 0 , y + 0 ) = x , 0 + y , 0 = 0 ,可知M关于 B ( , ) 都是迷向的。同理, M * 关于 B ( , ) 也是迷向的。综上所述, ( M M * , M , M * ) 是Manin triple。

充分性。若 ( M M * , M , M * ) 是Manin triple,由定义4.1可知, ( M M * , [ ] , α + α * ) 是Hom-Malcev代数,因此,由定理3.2可知, ( M , M * , a d M * , a d M * * ) 是配对。

定理4.3:设 ( M , [ ] M , α ) ( M * , [ ] M * , α * ) 为相容的Hom-Malcev代数,则下列三个条件是等价的。

1) ( M , M * , Δ ) 为Hom-Malcev双代数。

2) ( M , M * , a d M * , a d M * * ) 是Hom-Malcev代数的配对。

3) ( M M * , M , M * ) 是Hom-Malcev代数的Manin triple。

证明:由定理4.2和定义3.5可推出。

文章引用

李进圆. Hom-Malcev代数的配对和Manin Triple
Matched Pair and Manin Triple of Hom-Malcev Algebra[J]. 理论数学, 2019, 09(05): 632-640. https://doi.org/10.12677/PM.2019.95084

参考文献

  1. 1. Kerdman, F.S. (1979) Analytic Moufang Loops in the Large. Algebra and Logic, 18, 325-347.
    https://doi.org/10.1007/BF01673501

  2. 2. Malcev, A.I. (1955) Analytic Loops. Matematicheskii Sbornik, 36, 569-576.

  3. 3. Yau, D. (2012) Hom-Maltsev, Hom-Alternative, and Hom-Jordan Algebras. International Electronic Journal of Algebra, 11, 177-217.

  4. 4. Issa, A.N. (2015) On Identities in Hom-Malcev Algebras. International Elec-tronic Journal of Algebra, 17, 1-10.
    https://doi.org/10.24330/ieja.266209

  5. 5. Sheng, Y. and Bai, C. (2014) A New Approach to Hom-Lie Bialgebras. Journal in Algebra, 399, 232-250.
    https://doi.org/10.1016/j.jalgebra.2013.08.046

  6. 6. Goncharov, M.E. (2012) Structures of Malcev Bialgebras on a Simple Non-Lie Malcev Algebra. Communications in Algebra, 40, 3071-3094.
    https://doi.org/10.1080/00927872.2011.560587

  7. 7. 李进圆, 李艳朋. Hom-Malcev代数的表示[J]. 高师理科学刊, 2019, 39(3): 6-9.

期刊菜单