Material Sciences
Vol. 14  No. 04 ( 2024 ), Article ID: 85798 , 11 pages
10.12677/ms.2024.144053

基于金属有机框架的超级电容器电极材料的 最新进展

周柃颖

浙江师范大学化学与材料科学学院,浙江 金华

收稿日期:2024年3月20日;录用日期:2024年4月21日;发布日期:2024年4月30日

摘要

超级电容器(SC)在储能领域被普遍认为是一种很有前途的电化学装置。电极材料作为超级电容器的组成部分之一,对储能器件的电化学性能起着至关重要的作用。因此,寻找或合成新的电极材料至关重要。金属有机骨架(Metal-Organic Frameworks, MOFs)材料作为金属有机材料(Metal-Organic Materials, MOM)中一类重要的新型材料,由于其功能多样性、固有的多孔性、大的比表面积、可调的孔隙度和简单的合成方法,在SCs中得到了广泛的研究。在这篇综述中,讨论了由金属–有机框架材料衍生的不同类型的纳米/微米混合结构作为超级电容器应用的电极材料的性能。

关键词

金属有机骨架,电极材料,衍生物,超级电容器,能量转换

Recent Advances in Electrode Materials for Supercapacitors Based on Metal-Organic Frameworks

Lingying Zhou

College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua Zhejiang

Received: Mar. 20th, 2024; accepted: Apr. 21st, 2024; published: Apr. 30th, 2024

ABSTRACT

Supercapacitor (SC) is widely regarded as a promising electrochemical device in the field of energy storage. As one of the components of supercapacitors, the electrode material plays an important role in the electrochemical performance of energy storage devices. Therefore, it is very important to find or synthesize new electrode materials. Metal-Organic Framework (MOF) is important new material in Metal-Organic Materials (MOMs). Due to its functional diversity, inherent porosity, large specific surface area, adjustable porosity and simple synthesis method, it has been widely studied in SCs. In this review, we discuss the performance of different types of nano/micro composite structures derived from metal-organic frameworks as electrode materials for supercapacitor applications.

Keywords:Metal-Organic Framework Material, Electrode Materials, Derivative, Supercapacitor, Energy Conversion

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

Figure 1. Illustration of the different MOFs and MOF-derived electrode materials for supercapacitors

图1. 不同MOF及MOF衍生的超级电容器电极材料示意图

在世界能源中,越来越多的可再生能源(如太阳能、风能、潮汐能等)受到了更多的重视,占据着越来越重要的地位。然而,随着科技的发展和人类生活水平的提高,我们面临着日益严重的环境和资源问题,包括温室效应、光污染、资源短缺等。可再生能源资源的有限性和化石燃料消耗带来的污染极大地促进了对清洁绿色可持续能源的需求 ‎[1] 。为了解决这个问题,大量的研究人员积极参与开发能量高效的转换和存储设备,如锂离子(Li-ion)电池、电容器和燃料电池 ‎[2] ‎[3] ‎[4] ‎[5] 。在这些清洁能源存储设备中,超级电容器因其具有循环寿命长、功率密度高、工作范围宽、充放电速度快、储能能力强等优点而备受关注 ‎[6] ‎[7] ‎[8] ‎[9] ‎[10] 。虽然超级电容器可以存储大量的电荷,可以用于提供比可充电电池更高的功率等级,但它比电池和其他燃料电池具有更低的能量密度 ‎[11] 。因此,在不降低功率密度的前提下提高能量密度是超级电容器研发的主要目标。因为目前的材料由于比表面积(SSA)和孔隙率不足而提供低的功率密度和充电周期 ‎[12] ‎[13] 。

尽管使用碳材料作为电极在一定程度上克服了这些缺点,但它们仍然缺乏高电容和能量密度 ‎[14] 。此外,为了满足它们的性能,Yaghi等人 ‎[15] 于1995年提出了一类新的多孔材料,称为金属–有机框架或有机–无机杂化框架,通过在金属节点和有机配体之间发展配位键得到的一类材料。各种类型的金属离子和有机配体的使用导致了MOF结构的多样性。迄今为止,已经发现了超过20,000种不同组成的MOFs ‎[16] 。金属有机骨架材料通常是孔径小于2 nm的微孔结构。它们具有高结晶度和更可调的组成,这使得它们比其他缺乏选择性和吸收限制的多孔结构(如活性炭和沸石)更有效 ‎[16] ‎[17] ‎[18] 。我们详细总结了原始MOFs、MOFs衍生物和MOFs复合材料用于超级电容器的电化学性能分析,主要内容如图1所示。并总结了近年来该领域的重要成果,对该领域的主要挑战进行展望。

电化学超级电容器,又称超级电容器,根据不同的储能机制可以分为三种类型:分别为双电层电容(EDLC),赝电容和混合超级电容器(HSC) ‎[19] ‎[20] 。在EDLC机制中,基于非法拉第氧化还原反应,在电极和电解质的边界表面形成双电层;而在赝电容机制中,活性物质发生法拉第氧化还原反应 ‎[21] 。

已有文献表明,电极材料是影响SCs电化学性能的重要因素之一。EDLCs通常采用具有高表面积和适当孔隙率的碳基材料,如碳纳米管(CNT)、石墨烯和活性炭(AC),而过渡金属氧化物(MO)、过渡金属氢氧化物和导电聚合物通常用作法拉第赝电容器的电极材料 ‎[22] ‎[23] ‎[24] 。不同于EDLCs和赝电容器,HSCs由电容型电极和电池型电极组成 ‎[25] ‎[26] ‎[27] 。

利用两种不同的反应机理(非法拉第氧化还原反应和法拉第氧化还原反应)同时实现高的比能量和比功率。此外,根据活性物质的不同,超级电容器还可以分为对称超级电容器和非对称超级电容器。对称超级电容器具有相同的正负极活性物质,而非对称超级电容器(ASC)具有不同的正负极活性物质。与对称超级电容器相比,由电池型电极和电容型电极组装的ASCs不仅拓宽了工作电压,也大大提高了比电容和能量密度 ‎[28] 。

在三类超级电容器中,开发先进的电极材料是获得高电化学性能的关键。MOF材料由于具有多孔性、多功能性、突出的比表面积、可调控的功能性、多样的结构和可控的化学组成,被普遍认为是下一代储能器件的有前途的材料 ‎[28] ‎[29] ‎[30] ‎[31] 。在气体存储/分离、污染物吸附、药物缓释、选择性催化等领域得到了广泛的应用 ‎[6] ‎[32] ‎[33] ‎[34] 。

MOF除了具有高比表面积、多孔性、多重氧化还原活性、化学和机械稳定性以及晶体结构多样外,还含有丰富的电荷存储活性位点。尽管上述优点有助于提高电化学性能,但大多数原始MOF在充放电过程中的低电导率和低化学/结构稳定性仍然限制了其在超级电容器中的应用。

2. 用于SCs的MOF电极材料

2.1. 原始MOF用于SC

由于其独特的性质,如可调的孔径、有序的晶体结构和极大的比表面积,MOF被广泛用于催化、药物输送、气体存储/分离和储能装置等领域 ‎[35] ‎[36] 。另一方面,MOF在储能领域的应用已经成为众多研究的焦点。由于其高度有序的结构和丰富的氧化还原金属中心,MOF最近被广泛用作超级电容器的电极材料 ‎[37] ‎[38] 。迄今为止,原始的M-MOF (M = Zn, Co, Mn, Fe, Ni)在几何形貌和结构上没有任何功能化,由于其原料丰富、廉价易得而被广泛研究。其中,沸石咪唑骨架材料(ZIFs)作为一类重要的MOF,由金属离子和有机配体咪唑盐构筑而成,受到研究者的青睐。ZIFs应用于SCs中最典型的材料是ZIF-8和ZIF-67。ZIF-8由锌离子和N-甲基咪唑组成,具有良好的热稳定性,易于合成和近似的孔隙率,而ZIF-67由钴离子和N-甲基咪唑构建 ‎[39] 。Zhang等人 ‎[40] 报道了通过一步溶剂热法制备的NiCo-MOF,与其他NiCo-MOF和Ni/Co-MOF相比,表现出最佳的电化学性能。由于其独特的三维球形树莓状结构,NiCo-MOF-3显示出有效的内阻和电子转移电阻,以改善电能存储,在1A/g时表现出优异的质量比电容639.8 F/g ‎[41] 。Nguyen等人 ‎[42] 报道了通过电泳沉积法制备Ni3(HITP)2,该MOF具有非常好的循环稳定性(如图2所示)。

Figure 2. (a) The excellent cyclic stability of Ni3(HITP)2; (b) Schematic illustration of preparation and EPD of Ni3(HITP)2 supercapacitors ‎[42]

图2. (a) Ni3(HITP)2优异的循环稳定性;(b) Ni3(HITP)2超级电容器的制备及EPD示意图 ‎[42]

此外,Ma等人 ‎[43] 以CuSO4⋅5H2O、4-氨基-1,2,4-三氮唑(atrz)和1,3-苯二甲酸(1,3-BDC)为原料合成了另一种纯MOF,称为Cu4簇基三维MOF (Cu-atrz-BDC)。在三电极体系中,Cu-atrz-BDC作为电极材料在1 A/g的电流密度下表现出5525 F/g的超高比电容,1000次循环后仍保持886 F/g的高比电容保持率。此外,以Cu-atrz-BDC为正极、rGO为负极的自组装非对称超级电容器也表现出了良好的倍率性能、循环稳定性、低内阻、快速电荷传输等优异性能。还有一些其他的原始MOF应用于SCs,包括多孔晶体结构的新型纳米海绵状原始Zr-MOF、UiO-66和Ce-MOF-808等 ‎[44] ‎[45] ‎[46] 。总的来说,原始的MOF很可能凭借其天然的优点成为电极材料的有前途的候选者。考虑到环境友好性、原料的丰富性和过程的复杂性,进一步探索具有良好导电性、形貌和粒径分布的原始MOF。

2.2. MOF衍生材料用于SC

与原始MOF相比,MOF衍生材料因其化学成分可控、形态独特、孔道丰富、孔隙度好等优点,在燃料电池、超级电容器等储能器件中具有广阔的应用前景 ‎[47] ‎[48] ‎[49] 。

当这些MOF衍生物用作电极时,它们可以提供出色的电化学性能,如良好的电容、循环稳定性和增强的电导率 ‎[50] 。近几十年来,相关研究人员在这一领域做了大量的工作。例如,MOF衍生的多孔碳具有新颖的形貌和特定的分级多孔结构,有利于提高电化学性能。Wang报道了两种ZIF-8衍生的多孔碳多面体(ZDPC)和电池状的MoS2-ZIF复合材料 ‎[51] 。多孔碳多面体具有连续的3D多孔网络结构,具有极高的比表面积和可控的孔径分布MoS2-ZIF复合材料显示出具有开放框架的三维(3D)纳米结构(如图3所示) ‎[51] 。当它们用作电容器的电极时,该混合系统表现出较大的能量密度和20,000 Wkg−1的高功率密度。作者认为该材料在能量、功率和循环寿命方面显示了当前混合超级电容器的最佳性能 ‎[51] 。

Figure 3. Schematic of the synthesis of the 3D MoS2-ZIF composite and ZIF-8 derived porous carbon (ZDPC) ‎[51]

图3. 3D MoS2-ZIF复合材料和ZIF-8衍生多孔碳(ZDPC)的合成示意图 ‎[51]

Figure 4. Schematic illustration for the preparation of MOF-derived porous carbons and single crystal structure of NPMOF ‎[54]

图4. MOF衍生多孔碳的制备示意图及NPMOF的单晶结构 ‎[54]

为了进一步提高材料的热稳定性和热容量,通常采用多原子掺杂策略和化学活化,其中杂原子掺杂(N、S、B、P)在MOF应用中尤为重要 ‎[52] 。其中,在特定条件下煅烧MOF在多孔碳中进行氮掺杂是其应用于电极材料的主要途径之一,且已有研究证明氮源来自于N2气氛或有机配体 ‎[53] 。例如,Gu等人 ‎[54] 通过直接碳化纳米多孔Zn-MOF制备了氮和氧原子共掺杂的NPC,其中有机配体含有丰富的氮元素(如图4所示)。在此过程中,通过调整热解温度,制备了一系列高N/O含量的NPMOF衍生多孔碳。由于NPMOF-800的有效表面积、孔径分布和杂原子掺杂,它们在三电极体系中表现出更好的电化学性能、良好的离子扩散和电荷转移行为。计算得到NPMOF-800的比电容可达220 F/g,具有极高的比表面积归一化电容(57.7 mF/cm2),这可归因于其超高的杂原子含量(N: 13.91%, O: 6.27%)和超微孔特性。用作电极时,它显示出优异的能量和功率密度,良好的倍率性能,在10,000次充放电循环后电容保持率为99.1%。这些显著的优点归因于杂原子(N和O)的存在增强了赝电容和润湿性。

过渡金属氧化物在储能方面具有热容量高、化学稳定性好、尺寸和带型可控等特点 ‎[55] ‎[56] 。MOF为各种形貌的金属氧化物提供了模板,具有较大的比表面积和较好的循环稳定性 ‎[57] ‎[58] 。例如,Song等人 ‎[59] 通过将相应的Cu-MOF浸泡在NaOH溶液中,制备了由纳米颗粒、纳米线和纳米片组成的具有3D海胆状和棒状超结构的两种新型CuO。Tian等人 ‎[60] 制备了多孔中空四面体Co3O4作为锂离子电池负极材料选用双壁四面体MOF作为前驱体,制备中空Co3O4。得益于高度多孔的中空结构,所得材料表现出较大的储锂容量、优异的倍率性能和循环稳定性。

2.3. MOF复合材料用于SCs

Figure 5. (a) Schematic representation of a flexible supercapacitor device based on ZIF-PPy-2 electrodes and gel electrolyte; (b) CV curves at various scan rates; (c) GCD curves at various current densities, and (d) Corresponding Ragone plots and comparisons of ZIF-PPy-2 flexible supercapacitor

图5. (a) 基于ZIF-PPy-2电极和凝胶电解质的柔性超级电容器器件的示意图;(b) 不同扫描速率下的CV曲线;(c) 不同电流密度下的GCD曲线;(d) 相应的Ragone图和ZIF-PPy-2柔性超级电容器的比较

与电池相比,较低的能量密度和较差的导电性阻碍了储能器件的进一步发展。为了解决这一问题,人们采取了许多措施,如探索具有优异导电性的新型MOF,制备其衍生物(过渡金属氧化物、过渡金属硫化物等),合成MOF复合材料等。上述方法可以为MOF复合电极在长期循环过程中提供结构稳定性和高导电性 ‎[61] 。MOF复合材料作为一种新型功能材料,目前发展迅速。由于它们的协同作用,已被应用于气体吸附、分离、电化学发光、光电化学生物传感器、高效液相色谱、催化、气体传感、药物传递等领域,甚至扩展到燃料电池和电催化等领域 ‎[62] ‎[63] ‎[64] ‎[65] 。

一般来说,不同MOF与导电聚合物结合后,其电化学性能各不相同。在最近的研究中,Ferhi等人 ‎[66] 通过溶剂热法成功合成了缺陷型MOF-808@聚苯胺复合材料用于高电容保持率的超级电容器电极。作者声称,这是首个使用缺陷的d-MOF来制备杂化材料d-MOF-808@PANI,其中d-MOF-808和PANI的摩尔比不同(15:1, 30:1, 60:1)。在这种情况下,通过d-MOF-808活化、超声处理、真空干燥等步骤制备了缺陷MOF-808@聚苯胺复合材料。活化后的d-MOF-808@PANI (60:1)电极表现出比纯d-MOF-808和纯PANI电极更优异的电化学性能,在10,000次循环后电容保持率为99.7%。一个可能的原因是有缺陷的结构可以减少MOF的堵塞。Wang等人 ‎[67] 还发表了一篇关于分级多孔PANI/MIL-101纳米复合材料的文章。在恒流充电和放电测试中,所得PANI/MIL-101在1 A/g下表现出1197 F/g (即957.6 C/g)的优异高电容。组装的柔性固态超级电容器还显示出良好的比电容、功率密度和良好的循环稳定性(在10,000次循环中81%的电容保持率)。徐等人 ‎[68] 通过加热处理合成了三维网络MOF@PPy复合材料,其中PPy作为MOF颗粒原位生长的支撑。在三电极测试中,该复合材料表现出597.6 F/g的高比电容和2.33 F/cm2的高面积电容。而且ZIF-PPy-2在0~0.6 V之间表现出稳定的性能。在柔性超级电容器器件中具有225.8 mF/cm2的高面积比电容(如图5所示)。

3. 总结与展望

为了满足对高性能能量储存和转换设备的巨大需求,电极材料的进展至关重要。MOF可以通过简单的后处理(通常包括热解)转化为相当稳定的材料。这些新结构在许多应用中成为理想材料,并且经常优于传统结构。然而,MOF基电极材料的应用存在一定的局限性。例如,原始MOF的低导电性是一个严重的缺陷。此外,MOF衍生材料具有更好的稳定性,但不再具有任何规则孔隙率,MOF基复合材料仍然存在原MOF的化学稳定性差的问题。本文的前几部分重点介绍了超级电容器材料的一些研究和开发报道。这些研究有着十分重要的作用,为后续继续探究超级电容器高性能材料奠定了基础。

未来还需要继续探究,以提高功率和超级电容器的能量密度。虽然在这一领域取得了很大进展,但前方仍有重大困难。首先,现有的MOF大多电导率低,这对实际应用来说是一个很大的缺点。因此制备新的具有更高导电性的MOF是解决超级电容器电极材料的最佳途径。第二,探究MOF衍生材料的更简单的制备方法。MOF衍生材料不仅能保留本体MOF的性质不变,还能表现出更高的电化学性能。是储能材料不错的选择之一。因此,探索更简单环保的合成方法至关重要。第三,MOF基复合材料保留了本体MOF的优点,其他组分可能提供优异的导电性能或与MOF结合形成互通的网络结构有利于电子传递和离子传输。由于这种协同效应,复合材料比任何单一组分都能表现出更强的电化学行为。因此对于复合材料的探究我们不能停止脚步。在未来,由于对各种新型高导电性原始MOF的理解仍然很少,因此需要大量的工作来阐明其导电机理。随着合成方法的进步和规模化,越来越多具有优异电化学性能的MOF衍生物和MOF复合材料将迅速发展成为一种具有广泛能源和环境应用价值的新型、经济、可持续的电极材料。

文章引用

周柃颖. 基于金属有机框架的超级电容器电极材料的最新进展
Recent Advances in Electrode Materials for Supercapacitors Based on Metal-Organic Frameworks[J]. 材料科学, 2024, 14(04): 463-473. https://doi.org/10.12677/ms.2024.144053

参考文献

  1. 1. Sanyal, S. and Wuebbles, D.J. (2022) The Potential Impact of A Clean Energy Society on Air Quality. Earths Future, 10, e2021EF002558. https://doi.org/10.1029/2021EF002558

  2. 2. Shah, S.S.A., Najam, T., Bashir, M.S., Peng, L., Nazir, M.A. and Javed, M.S. (2022) Single-Atom Catalysts for Next-Generation Rechargeable Batteries and Fuel Cells. Energy Storage Materials, 45, 301-322. https://doi.org/10.1016/j.ensm.2021.11.049

  3. 3. Li, C., Sun, X., Yao, Y. and Hong, G. (2021) Recent Advances of Electrically Conductive Metal-Organic Frameworks in Electrochemical Applications. Materials Today Nano, 13, Article ID: 100105. https://doi.org/10.1016/j.mtnano.2020.100105

  4. 4. Fagiolari, L., Sampò, M., Lamberti, A., Amici, J., Francia, C., Bodoardo, S. and Bella, F. (2022) Integrated Energy Conversion and Storage Devices: Interfacing Solar Cells, Batteries and Supercapacitors. Energy Storage Materials, 51, 400-434. https://doi.org/10.1016/j.ensm.2022.06.051

  5. 5. Duffner, F., Kronemeyer, N., Tübke, J., Leker, J., Winter, M. and Schmuch, R. (2021) Post-Lithium-Ion Battery Cell Production and Its Compatibility with Lithium-Ion Cell Production Infrastructure. Nature Energy, 6, 123-134. https://doi.org/10.1038/s41560-020-00748-8

  6. 6. Zhong, M., Zhang, M. and Li, X. (2022) Carbon Nanomaterials and Their Composites for Supercapacitors. Carbon Energy, 4, 950-985. https://doi.org/10.1002/cey2.219

  7. 7. Zhang, D., Tan, C., Zhang, W., Pan, W., Wang, Q. and Li, L. (2022) Expanded Graphite-Based Materials for Supercapacitors: A Review. Molecules, 27, Article 716. https://doi.org/10.3390/molecules27030716

  8. 8. Naseri, F., Karimi, S., Farjah, E. and Schaltz, E. (2022) Supercapacitor Management System: A Comprehensive Review of Modeling, Estimation, Balancing, and Protection Techniques. Renewable and Sustainable Energy Reviews, 155, Article ID: 111913. https://doi.org/10.1016/j.rser.2021.111913

  9. 9. Jiang, S., Li, S., Xu, Y., Liu, Z., Weng, S., Lin, M., Xu, Y., Jiao, Y. and Chen, J. (2021) An Iron Based Organic Framework Coated with Nickel Hydroxide for Energy Storage, Conversion and Detection. Journal of Colloid and Interface Science, 600, 150-160. https://doi.org/10.1016/j.jcis.2021.05.014

  10. 10. Ega, S.P. and Srinivasan, P. (2022) Quinone Materials for Supercapacitor: Current Status, Approaches, and Future Directions. Journal of Energy Storage, 47, Article ID: 103700. https://doi.org/10.1016/j.est.2021.103700

  11. 11. Lokhande, P.E. and Chavan, U.S. (2019) Nanostructured Ni(OH)2/RGO Composite Chemically Deposited on Ni Foam for High Performance of Supercapacitor Applications. Materials Science for Energy Technologies, 2, 52-56. https://doi.org/10.1016/j.mset.2018.10.003

  12. 12. Lokhande, P.E., Chavan, U.S., Deokar, S., Ingale, M., Bhosale, S., Kale, S. and Kamte, A. (2019) Surfactant Free Chemically Deposited Wheat Spike-Like Nanostructure on Cu Foam for Supercapacitor Applications. Materials Today: Proceedings, 18, 979-985. https://doi.org/10.1016/j.matpr.2019.06.537

  13. 13. Balasubramaniam, S., Mohanty, A., Balasingam, S.K., Kim, S.J. and Ramadoss, A. (2020) Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano-Micro Letters, 12, Article No. 85. https://doi.org/10.1007/s40820-020-0413-7

  14. 14. Rawat, S., Mishra, R.K. and Bhaskar, T. (2022) Biomass Derived Functional Carbon Materials for Supercapacitor Applications. Chemosphere, 286, Article ID: 131961. https://doi.org/10.1016/j.chemosphere.2021.131961

  15. 15. Yaghi, O.M. and Li, H. (1995) Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society, 117, 10401-10402. https://doi.org/10.1021/ja00146a033

  16. 16. Muzaffar, A., Ahamed, M.B., Deshmukh, K. and Thirumalai, J. (2019) A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renewable and Sustainable Energy Reviews, 101, 123-145. https://doi.org/10.1016/j.rser.2018.10.026

  17. 17. Howarth, A.J., Liu, Y., Li, P., Li, Z., Wang, T.C., Hupp, J.T. and Farha, O.K. (2016) Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks. Nature Reviews Materials, 1, Article No. 15018. https://doi.org/10.1038/natrevmats.2015.18

  18. 18. Gong, H., Bie, S., Zhang, J., Ke, X., Wang, X., Liang, J., Wu, N., Zhang, Q., Luo, C. and Jia, Y. (2022) In Situ Construction of ZIF-67-Derived Hybrid Tricobalt Tetraoxide@Carbon for Supercapacitor. Nanomaterials, 12, Article 1571. https://doi.org/10.3390/nano12091571

  19. 19. Şahin, M., Blaabjerg, F. and Sangwongwanich, A. (2022) A Comprehensive Review on Supercapacitor Applications and Developments. Energies, 15, Article 674. https://doi.org/10.3390/en15030674

  20. 20. Lamba, P., Singh, P., Singh, P., Singh, P., Bharti Kumar, A., Gupta, M. and Kumar, Y. (2022) Recent Advancements in Supercapacitors Based on Different Electrode Materials: Classifications, Synthesis Methods and Comparative Performance. Journal of Energy Storage, 48, Article ID: 103871. https://doi.org/10.1016/j.est.2021.103871

  21. 21. Pershaanaa, M., Bashir, S., Ramesh, S. and Ramesh, K. (2022) Every Bite of Supercap: A Brief Review on Construction and Enhancement of Supercapacitor. Journal of Energy Storage, 50, Article ID: 104599. https://doi.org/10.1016/j.est.2022.104599

  22. 22. Tafete, G.A., Abera, M.K. and Thothadri, G. (2022) Review on Nanocellulose-Based Materials for Supercapacitors Applications. Journal of Energy Storage, 48, Article ID: 103938. https://doi.org/10.1016/j.est.2021.103938

  23. 23. Lakra, R., Kumar, R., Sahoo, P.K., Thatoi, D. and Soam, A. (2021) A Mini-Review: Graphene Based Composites for Supercapacitor Application. Inorganic Chemistry Communications, 133, Article ID: 108929. https://doi.org/10.1016/j.inoche.2021.108929

  24. 24. Kumar, S., Saeed, G., Zhu, L., Hui, K.N., Kim, N.H. and Lee, J.H. (2021) 0D to 3D Carbon-Based Networks Combined with Pseudocapacitive Electrode Material for High Energy Density Supercapacitor: A Review. Chemical Engineering Journal, 403, Article ID: 126352. https://doi.org/10.1016/j.cej.2020.126352

  25. 25. Dhandapani, E., Thangarasu, S., Ramesh, S., Ramesh, K., Vasudevan, R. and Duraisamy, N. (2022) Recent Development and Prospective of Carbonaceous Material, Conducting Polymer and Their Composite Electrode Materials for Supercapacitor—A Review. Journal of Energy Storage, 52, Article ID: 104937. https://doi.org/10.1016/j.est.2022.104937

  26. 26. Chatterjee, D.P. and Nandi, A.K. (2021) A Review on the Recent Advances in Hybrid Supercapacitors. Journal of Materials Chemistry A, 9, 15880-15918. https://doi.org/10.1039/D1TA02505H

  27. 27. Amiri, A., Swart, E.N. and Polycarpou, A.A. (2021) Recent Advances in Electrochemically-Efficient Materials for Zinc-Ion Hybrid Supercapacitors. Renewable and Sustainable Energy Reviews, 148, Article ID: 111288. https://doi.org/10.1016/j.rser.2021.111288

  28. 28. Zhao, Y., He, X., Chen, R., Liu, Q., Liu, J., Song, D., Zhang, H., Dong, H., Li, R., Zhang, M. and Wang, J. (2018) Hierarchical NiCo2S4@CoMoO4 Core-Shell Heterostructures Nanowire Arrays as Advanced Electrodes for Flexible All-Solid-State Asymmetric Supercapacitors. Applied Surface Science, 453, 73-82. https://doi.org/10.1016/j.apsusc.2018.04.159

  29. 29. Zheng, S., Li, X., Yan, B., Hu, Q., Xu, Y., Xiao, X., Xue, H. and Pang, H. (2017) Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage. Advanced Energy Materials, 7, Article ID: 1602733. https://doi.org/10.1002/aenm.201602733

  30. 30. Peng, Y., Xu, J., Xu, J., Ma, J., Bai, Y., Cao, S., Zhang, S. and Pang, H. (2022) Metal-Organic Framework (MOF) Composites as Promising Materials for Energy Storage Applications. Advances in Colloid and Interface Science, 307, Article ID: 102732. https://doi.org/10.1016/j.cis.2022.102732

  31. 31. Niu, L., Wu, T., Chen, M., Yang, L., Yang, J., Wang, Z., Kornyshev, A.A., Jiang, H., Bi, S. and Feng, G. (2022) Conductive Metal-Organic Frameworks for Supercapacitors. Advanced Materials, 34, Article ID: 2200999. https://doi.org/10.1002/adma.202200999

  32. 32. Yu, R., Zhang, H. and Guo, B. (2021) Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. Nano-Micro Letters, 14, Article No. 1. https://doi.org/10.1007/s40820-021-00751-y

  33. 33. Lu, Q., Zhao, X., Fang, R. and Li, Y. (2022) Hierarchical Pores-Confined Ultrasmall Cu Nanoparticles for Efficient Oxidation of 5-Hydroxymethylfurfural. ChemSusChem, 15, e202200210. https://doi.org/10.1002/cssc.202200210

  34. 34. Choi, K.M., Jeong, H.M., Park, J.H., Zhang, Y.B., Kang, J.K. and Yaghi, O.M. (2014) Supercapacitors of Nanocrystalline Metal-Organic Frameworks. ACS Nano, 8, 7451-7457. https://doi.org/10.1021/nn5027092

  35. 35. Yang, J., Xiong, P., Zheng, C., Qiu, H. and Wei, M. (2014) Metal-Organic Frameworks: A New Promising Class of Materials for a High Performance Supercapacitor Electrode. Journal of Materials Chemistry A, 2, 16640-16644. https://doi.org/10.1039/C4TA04140B

  36. 36. Grünker, R., Bon, V., Müller, P., Stoeck, U., Krause, S., Mueller, U., Senkovska, I. and Kaskel, S. (2014) A New Metal-Organic Framework with Ultra-High Surface Area. Chemical Communications, 50, 3450-3452. https://doi.org/10.1039/c4cc00113c

  37. 37. Vinogradov, A.V., Zaake-Hertling, H., Hey-Hawkins, E., Agafonov, A.V., Seisenbaeva, G.A., Kessler, V.G. and Vinogradov, V.V. (2014) The First Depleted Heterojunction TiO2-MOF-Based Solar Cell. Chemical Communications, 50, 10210-10213. https://doi.org/10.1039/C4CC01978D

  38. 38. Liang, X., Zhang, F., Feng, W., Zou, X., Zhao, C., Na, H., Liu, C., Sun, F. and Zhu, G. (2013) From Metal-Organic Framework (MOF) To MOF-Polymer Composite Membrane: Enhancement of Low-Humidity Proton Conductivity. Chemical Science, 4, 983-992. https://doi.org/10.1039/C2SC21927A

  39. 39. Xiao, X., Zou, L., Pang, H. and Xu, Q. (2020) Synthesis of Micro/Nanoscaled Metal-Organic Frameworks and Their Direct Electrochemical Applications. Chemical Society Reviews, 49, 301-331. https://doi.org/10.1039/C7CS00614D

  40. 40. Zhang, W., Shahnavaz, Z., Yan, X., Huang, X., Wu, S., Chen, H., Pan, J., Li, T. and Wang, J. (2022) One-Step Solvothermal Synthesis of Raspberry-Like NiCo-MOF for High-Performance Flexible Supercapacitors for a Wide Operation Temperature Range. Inorganic Chemistry, 61, 15287-15301. https://doi.org/10.1021/acs.inorgchem.2c02916

  41. 41. Sheberla, D., Bachman, J.C., Elias, J.S., Sun, C.J., Shao-Horn, Y. and Dincă, M. (2017) Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. Nature Materials, 16, 220-224. https://doi.org/10.1038/nmat4766

  42. 42. Nguyen, D.K., Schepisi, I.M. and Amir, F.Z. (2019) Extraordinary Cycling Stability of Ni3(HITP)2 Supercapacitors Fabricated by Electrophoretic Deposition: Cycling at 100,000 Cycles. Chemical Engineering Journal, 378, Article ID: 122150. https://doi.org/10.1016/j.cej.2019.122150

  43. 43. Ma, Y., Gao, G., Su, H., Rong, H., Lai, L. and Liu, Q. (2021) A Cu4 Cluster-Based MOF as a Supercapacitor Electrode Material with Ultrahigh Capacitance. Ionics, 27, 1699-1707. https://doi.org/10.1007/s11581-021-03954-w

  44. 44. Sung, Y.S. and Lin, L.Y. (2021) Improving Energy Storage Ability of Universitetet I Oslo-66 as Active Material of Supercapacitor Using Carbonization and Acid Treatment. Journal of Energy Storage, 37, Article ID: 102480. https://doi.org/10.1016/j.est.2021.102480

  45. 45. Shen, C.H., Chuang, C.H., Gu, Y.J., Ho, W.H., Song, Y.D., Chen, Y.C., Wang, Y.C. and Kung, C.W. (2021) Cerium-Based Metal-Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Applied Materials & Interfaces, 13, 16418-16426. https://doi.org/10.1021/acsami.1c02038

  46. 46. Li, J.H., Chen, Y.C., Wang, Y.S., Ho, W.H., Gu, Y.J., Chuang, C.H., Song, Y.D. and Kung, C.W. (2020) Electrochemical Evolution of Pore-Confined Metallic Molybdenum in a Metal-Organic Framework (MOF) for All-MOF-Based Pseudocapacitors. ACS Applied Energy Materials, 3, 6258-6267. https://doi.org/10.1021/acsaem.0c00399

  47. 47. Tang, X., Li, N. and Pang, H. (2022) Metal-Organic Frameworks-Derived Metal Phosphides for Electrochemistry Application. Green Energy & Environment, 7, 636-661. https://doi.org/10.1016/j.gee.2021.08.003

  48. 48. Karuppasamy, K., Vikraman, D., Hussain, S., Santhoshkumar, P., Bose, R., Sivakumar, P., Alfantazi, A., Jung, J. and Kim, H.S. (2022) Unveiling the Redox Electrochemistry of MOF-Derived Fcc-NiCo@GC Polyhedron as an Advanced Electrode Material for Boosting Specific Energy of the Supercapattery. Small, 18, Article ID: 2107284. https://doi.org/10.1002/smll.202107284

  49. 49. Jiang, G., Osman, S., Senthil, R.A., Sun, Y., Tan, X. and Pan, J. (2022) Hierarchically Porous Carbon Derived from Magnesium-Based Metal-Organic Frameworks as Advanced Active Material for Supercapacitor. Journal of Energy Storage, 49, Article ID: 104071. https://doi.org/10.1016/j.est.2022.104071

  50. 50. Dai, Y., Liu, C., Bai, Y., Kong, Q. and Pang, H. (2022) Framework Materials for Supercapacitors. Nanotechnology Reviews, 11, 1005-1046. https://doi.org/10.1515/ntrev-2022-0042

  51. 51. Wang, R., Jin, D., Zhang, Y., Wang, S., Lang, J., Yan, X. and Zhang, L. (2017) Engineering Metal Organic Framework Derived 3D Nanostructures for High Performance Hybrid Supercapacitors. Journal of Materials Chemistry A, 5, 292-302. https://doi.org/10.1039/C6TA09143A

  52. 52. Qian, X., Jin, L., Wang, S., Yao, S., Rao, D., Shen, X., Xi, X. and Xiang, J. (2016) Zn-MOF Derived Micro/Meso Porous Carbon Nanorod for High Performance Lithium-Sulfur Battery. RSC Advances, 6, 94629-94635. https://doi.org/10.1039/C6RA19356K

  53. 53. Li, J.S., Li, S.L., Tang, Y.J., Li, K., Zhou, L., Kong, N., Lan, Y.Q., Bao, J.C. and Dai, Z.H. (2014) Heteroatoms Ternary-Doped Porous Carbons Derived from MOFs as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Scientific Reports, 4, Article No. 5130. https://doi.org/10.1038/srep05130

  54. 54. Gu, Y., Miao, L., Yin, Y., Liu, M., Gan, L. and Li, L. (2021) Highly N/O Co-Doped Ultramicroporous Carbons Derived from Nonporous Metal-Organic Framework for High Performance Supercapacitors. Chinese Chemical Letters, 32, 1491-1496. https://doi.org/10.1016/j.cclet.2020.09.029

  55. 55. Zhang, W., Jiang, X., Wang, X., Kaneti, Y.V., Chen, Y., Liu, J., Jiang, J.S., Yamauchi, Y. and Hu, M. (2017) Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals. Angewandte Chemie International Edition, 56, 8435-8440. https://doi.org/10.1002/anie.201701252

  56. 56. Chen, M., Chao, D., Liu, J., Yan, J., Zhang, B., Huang, Y., Lin, J. and Shen, Z.X. (2017) Rapid Pseudocapacitive Sodium-Ion Response Induced by 2D Ultrathin Tin Monoxide Nanoarrays. Advanced Functional Materials, 27, Article ID: 1606232. https://doi.org/10.1002/adfm.201606232

  57. 57. Li, X., Fang, Y., Lin, X., Tian, M., An, X., Fu, Y., Li, R., Jin, J. and Ma, J. (2015) MOF Derived Co3O4 Nanoparticles Embedded in N-Doped Mesoporous Carbon Layer/MWCNT Hybrids: Extraordinary Bi-Functional Electrocatalysts for OER and ORR. Journal of Materials Chemistry A, 3, 17392-17402. https://doi.org/10.1039/C5TA03900B

  58. 58. Ramaraju, B., Li, C.H., Prakash, S. and Chen, C.C. (2016) Metal-Organic Framework Derived Hollow Polyhedron Metal Oxide Posited Graphene Oxide for Energy Storage Applications. Chemical Communications, 52, 946-949. https://doi.org/10.1039/C5CC07621H

  59. 59. Song, Y., Li, X., Wei, C., Fu, J., Xu, F., Tan, H., Tang, J. and Wang, L. (2015) A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks. Scientific Reports, 5, Article No. 8401. https://doi.org/10.1038/srep08401

  60. 60. Tian, D., Zhou, X.L., Zhang, Y.H., Zhou, Z. and Bu, X.H. (2015) MOF-Derived Porous Co3O4 Hollow Tetrahedra with Excellent Performance as Anode Materials for Lithium-Ion Batteries. Inorganic Chemistry, 54, 8159-8161. https://doi.org/10.1021/acs.inorgchem.5b00544

  61. 61. Yan, J., Liu, T., Liu, X., Yan, Y. and Huang, Y. (2022) Metal-Organic Framework-Based Materials for Flexible Supercapacitor Application. Coordination Chemistry Reviews, 452, Article ID: 214300. https://doi.org/10.1016/j.ccr.2021.214300

  62. 62. Yang, B., Li, B. and Xiang, Z. (2023) Advanced MOF-Based Electrode Materials for Supercapacitors and Electrocatalytic Oxygen Reduction. Nano Research, 16, 1338-1361. https://doi.org/10.1007/s12274-022-4682-y

  63. 63. Si, T., Lu, X., Zhang, H., Wang, S., Liang, X. and Guo, Y. (2022) Metal-Organic Framework-Based Core-Shell Composites for Chromatographic Stationary Phases. TrAC Trends in Analytical Chemistry, 149, Article ID: 116545. https://doi.org/10.1016/j.trac.2022.116545

  64. 64. Sharma, A., Karuppasamy, K., Vikraman, D., Cho, Y., Adaikalam, K., Korvink, J.G., Kim, H.S. and Sharma, B. (2022) Metal Organic Framework-Derived ZnO@GC Nanoarchitecture as an Effective Hydrogen Gas Sensor with Improved Selectivity and Gas Response. ACS Applied Materials & Interfaces, 14, 44516-44526. https://doi.org/10.1021/acsami.2c10706

  65. 65. Liao, X., Fu, H., Yan, T. and Lei, J. (2019) Electroactive Metal-Organic Framework Composites: Design and Biosensing Application. Biosensors and Bioelectronics, 146, Article ID: 111743. https://doi.org/10.1016/j.bios.2019.111743

  66. 66. Ferhi, N., Desalegn Assresahegn, B., Ardila-Suarez, C., Dissem, N., Guay, D. and Duong, A. (2022) Defective Metal-Organic Framework-808@Polyaniline Composite Materials for High Capacitance Retention Supercapacitor Electrodes. ACS Applied Energy Materials, 5, 1235-1243. https://doi.org/10.1021/acsaem.1c03649

  67. 67. Wang, Q., Shao, L., Ma, Z., Xu, J., Li, Y. and Wang, C. (2018) Hierarchical Porous PANI/MIL-101 Nanocomposites Based Solid-State Flexible Supercapacitor. Electrochimica Acta, 281, 582-593. https://doi.org/10.1016/j.electacta.2018.06.002

  68. 68. Xu, X., Tang, J., Qian, H., Hou, S., Bando, Y., Hossain, M.S.A., Pan, L. and Yamauchi, Y. (2017) Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 9, 38737-38744. https://doi.org/10.1021/acsami.7b09944

期刊菜单