Advances in Clinical Medicine
Vol. 12  No. 02 ( 2022 ), Article ID: 48561 , 8 pages
10.12677/ACM.2022.122119

腹膜透析相关腹膜纤维化的研究进展

张胜勋1,徐璐2,杜保川1,李新建2

1济宁医学院临床医学院,山东 济宁

2济宁医学院附属医院,山东 济宁

收稿日期:2022年1月7日;录用日期:2022年2月1日;发布日期:2022年2月9日

摘要

近几年来慢性肾脏病(Chronic kidney disease, CKD)的患病率持续上升,据统计,我国CKD的患病率约10.8%,终末期肾病(End stage of renal disease, ESRD)患者高达300万,接受透析的约60万,其中腹膜透析患者约占14%。腹膜透析(Peritoneal dialysis, PD)有很大优势,但长期PD会使腹膜的结构和功能发生变化,引起腹膜纤维化,最终造成超滤衰竭(Ultrafiltration failure, UFF),这一过程是导致PD失败的主要原因。本文从PD相关性腹膜纤维化的发生机制入手,介绍诊断和治疗该病的最新研究进展,包括细胞、动物实验层面,中医药治疗等方面,为进一步研究PD相关腹膜纤维化的防治问题提供临床证据。

关键词

腹膜透析,腹膜纤维化,腹膜炎

Advances in Peritoneal Dialysis-Related Peritoneal Fibrosis

Shengxun Zhang1, Lu Xu2, Baochuan Du1, Xinjian Li2

1Department of Clinical Medicine, Jining Medical University, Jining Shandong

2Affiliated Hospital of Jining Medical University, Jining Shandong

Received: Jan. 7th, 2022; accepted: Feb. 1st, 2022; published: Feb. 9th, 2022

ABSTRACT

In recent years, the prevalence of chronic kidney disease (CKD) has continued to rise, according to statistics, the prevalence of CKD in China is about 10.8%, end-stage kidney disease (ESRD) patients are as high as 3 million, about 600,000 people on dialysis, of which peritoneal dialysis patients account for about 14%. Peritoneal dialysis (PD) has great advantages, but long-term PD causes changes in the structure and function of the peritoneal membrane, causing peritoneal fibrosis and ultimately ultrafiltration failure (UFF), a process that is the main cause of PD failure. Starting with the mechanism of PD-related peritoneal fibrosis, this paper introduces the latest research progress in the diagnosis and treatment of the disease, including the experimental level of cells and animals, and the treatment of traditional Chinese medicine, so as to provide clinical evidence for further study of the prevention and treatment of PD-related peritoneal fibrosis.

Keywords:Peritoneal Dialysis, Peritoneal Fibrosis, Peritonitis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近几年来慢性肾脏病(Chronic kidney disease, CKD)的患病率持续上升,据统计,我国CKD的患病率约10.8%,终末期肾病(End stage of renal disease, ESRD)患者高达300万,接受透析的约60万,其中腹膜透析患者约占14%。随着现代医疗技术的进步,腹膜透析(Peritoneal dialysis, PD)作为可选择的肾脏替代治疗(Renal replacement therapy, RRT)方法之一,与血液透析(Hemodialysis, HD)相比具有较好的保护残存肾功能、维持机体血液动力学稳定、方便居家治疗、保持患者较好情绪状况和认知功能、较少的经济与社会负担、避免交叉感染(乙肝、艾滋病)等传染病等诸多优势 [1] [2] [3]。PD主要依赖腹膜作为一种生物半透膜来进行超滤和溶质扩散。但长期PD会使腹膜的结构和功能发生变化,引起腹膜纤维化(Peritoneal fibrosis, PF),最终造成超滤衰竭(Ultrafiltration failure, UFF),这一过程是导致PD失败的主要原因。这种功能衰竭的形态学表现为腹膜炎症、血管生成和纤维化 [4]。解开PF的发展机制,从机制入手才能更精准地治疗。本文将近年来诊断和治疗该疾病的文章进行综述,尤其是与中医药相关的,为进一步研究该病相关防治问题提供临床证据。

2. 腹膜的结构

腹膜是一种生物半透膜,由单层扁平连续的间皮细胞(Human mesothelial cells, HMC)和间皮下结缔组织组成 [5],其中结缔组织中有丰富的毛细血管。腹膜间皮细胞(Peritoneal mesothelial cells, PMCs)是发挥功能的主要细胞,在维持腹腔内环境稳定、细胞外基质的合成分解、腹膜的抗感染、调节局部血管张力等方面起着重要作用。在PD早期便可出现腹膜的形态学改变,并且随着透析时间的延长呈进行性改变。早期PMCs可保持完整,表现为微绒毛减少、变短,甚至消失。更显著的是间皮下细胞层增厚以及血管病变。最后PMCs消失,仅留有间皮下纤维结缔组织,伴有新生血管形成 [6]。这些形态改变必然引起腹膜的功能改变。进行性的腹膜胶原沉积和纤维化降低了葡萄糖的渗透电导,限制了水的运输,最终导致自由水运输和UFF [7]。

3. PD相关腹膜纤维化发生机制

PF与炎症、血管生成和上皮细胞–间充质细胞转分化(Epithelial-mesenchymal transition, EMT)密切相关,并且相互影响 [8] [9]。血管内皮生长因子(Vascular endothelial growth factor, VEGF)介导血管生成 [10],并且EMT是产生VEGF的主要来源 [11]。同时,有动物实验证明转化生长因子-β与VEGF信号转导有密切关系 [12]。非生物相容性透析液、高糖、高糖降解产物、高渗、低PH值、尿毒症本身以及反复发作的炎症反应均可引起EMT,最终导致PF的发生 [13]。腹膜新生血管形成、血管通透性增加,造成葡萄糖的吸收速率加快以及渗透压梯度迅速下降,从而减少有效交换废物时间。

目前研究已基本证实导致腹膜纤维化的关键过程是PMCs的EMT。

3.1. TGF-β

TGF-β是公认的致纤维化因子 [14],通过Smad和非Smad通路进行跨膜信号转导,发挥促纤维化作用。典型的Smad2/3信号通路,Smad2/3被PKC磷酸化,并被TGFR1和激活素受体I-β (ACTR1B)激活。Smad4与激活的Smad2/3复合体结合,进入细胞核,引起特定的下游靶基因被转录 [15]。Smad1、Smad5和Smad8,它们被ALK-1、ALK-2、BMP-RIA/ALK-3和BMP-RIB/ALK-6激活。Smad7是一种抑制性Smad,它通过阻断TGFRs的通路来抑制Smad2/3的磷酸化。有研究已经证明Smad7过表达对减轻PD诱导的PF [16] [17]。非Smad信号通路,包括TGFR1或TGFR2介导的蛋白激酶C (PKC)、细胞外信号调节激酶(ERK)、磷脂酰肌醇3激酶激活丝氨酸/苏氨酸特异性蛋白激酶(PI3K-Akt)等通路。结缔组织生长因子(CTGF)是TGF-β的下游调节因子。TGF-β刺激体外培养的成纤维细胞CTGF强烈上调,而其他生长因子不能诱导其表达,因此其在靶向预防或治疗PF中更有价值。氧化应激(OS)诱导是腹膜EMT的早期关键机制 [18] [19]。PD患者中OS的主要来源是腹透液的非生理性成分,包括高葡萄糖浓度、高渗透压和酸性pH [20]。最主要的是,腹透液中葡萄糖降解产物(GDPs)和晚期糖基化终产物(AGEs)触发ROS的形成。并且ROS促进炎症、纤维化因子的积累。在这个方向上,需要开发新的、更具生物相容性、等渗、中性、低GDP、碳酸氢盐缓冲的腹膜透析液。

3.2. 炎症状态

研究证实PD患者体内存在微炎症 [21] 状态,这一状态具有持续和相对隐匿的特点,实质是免疫性炎症。腹膜损伤导致巨噬细胞、中性粒细胞等的激活,它们会通过Toll样受体(TLRs)识别病原体,从而激活NF-κB信号通路,分泌大量的炎性细胞因子,包括IL-6、IL-1β、IL-8、TNF-α,介导PF [22]。TLRs诱导依赖于MyD88的信号通路,可激活ERK1/2、p38MAPKs、NF-κB和JNK下游分子,诱导促炎细胞因子产生。NLRP3炎症小体是天然免疫系统的重要组成部分。它的细胞内复合体由多种蛋白组成,这些蛋白介导caspase-1的激活,并调节致炎细胞因子白细胞介素(IL)-1、β和IL-18的释放,其异常激活与多种炎症疾病有关。研究表明,NLRP3炎症体与腹膜炎症和腹膜连续的结构和功能改变有关 [23]。IL-6、IL-17等细胞因子也参与炎症反应。研究表明即使在稳定的条件下,PD患者也会局部产生IL-6 [24],抑制IL-6转导信号可改善体外培养的人腹膜间皮细胞的EMT,并且发现这一过程是由TGF-β/Smad3介导的 [25]。IL-17已被证明存在于PD患者的腹膜中,并且与PD的病程以及腹膜炎症和纤维化的程度相关 [26]。IL-17可以刺激PMCs产生趋化因子,趋化中性粒细胞,并且促进血管生成。还可刺激细胞释放IL-6,另外可直接诱导间皮细胞产生VEGF,IL-17通过以上途径影响PF。

3.3. 非编码RNA

非编码RNA (NcRNAs)被定义为缺乏编码蛋白质能力的RNA,主要指miRNAs、lncRNAs和CircRNAs。NcRNAs的主要功能是通过调节转录、转录后和翻译后过程来调节基因表达。ncRNAs可以调控几乎所有的细胞过程,研究表明ncRNAs在PF的发病机制中起重要作用,有可能成为PF的诊断标记物和治疗靶点。证实miR-15a-5p通过直接靶向VEGF抑制PD诱导的PMCs的炎症和纤维化。体外研究表明,TGF-β/Smad2是miR-15a-5p/VEGF的下游信号通路,miR-15a-5p高表达可以抑制PF发生 [27]。EMT过程中紧密连接蛋白(Claudins)、E-钙粘附素(E-cadherin)表达下降,研究证实该过程是miR-199a-5p和miR-214-3p靶向调节的,沉默miR-199a-5p和miR-214-3p可抑制EMT [28]。miR-21在体内和体外均通过激活TGF-β/Smad信号通路促进PF,除Smad依赖途径外,miR-21还可通过非Smad途径诱导PF [29]。经TGF-β1处理后,miR-145表达显著上调,成纤维细胞生长因子10 (FGF10)表达明显下调。抑制miR-145可促进FGF10的表达并逆转EMT [30]。有研究证实miR-320c通过抑制CTGF的表达在PD过程中对TGF-β1诱导的EMT起保护作用 [31]。研究发现miR-200c在长期PD患者腹透流出液细胞(PMCs)中表达明显下降,miR-200c可以负向调控E-cadherin的转录抑制因子ZEB1和ZEB2,使得E-cadherin的表达上调,从而抑制EMT [32]。在小鼠模型中发现多种长非编码RNA (lncRNA)参与调控PF。其中,在TGF-β1刺激的HPMCs中高表达的有AV310809。实验表明,其能与β-catenin相互作用,通过激活WNT2/β-catenin信号通路促进TGF-β诱导的EMT [33]。实验表明,lncRNA AK089579可以直接与miR-269-3p结合,上调酪氨酸激酶2 (DOK2)的表达,抑制JAK2/STAT3信号通路抑制小鼠EMT [34]。

4. PD相关PF的评价指标

研究人员一直在寻找评估PF的生物标志物。根据PF的发生机制,理想的标志物能够做到评估间皮细胞功能、腹膜纤维化进展和炎症状态等情况。CA125是目前研究最广泛的反映腹膜功能的生物标志物 [35]。体外研究表明,CA125完全是由腹膜间皮细胞产生,因此它可以间接显示间皮细胞的数量。同时有研究表明CA125还可用于评价PD患者的PF程度,以及用来反映新型腹膜透析液是否有较好的生物相容性。IL-6有“致炎”和“抗炎”两种特性,并可以诱导肝脏合成急性时相反应蛋白(Acute phase reaction protein, APRP) [36]。急性感染时血浆中IL-6浓度增加,腹膜也可以产生IL-6,感染性腹膜炎发生时腹腔内IL-6水平会急剧的增加,此时它在腹透流出液中的浓度会超过血清中浓度,可以作为腹腔炎症的指标。VEGF是由腹膜产生的,在腹透流出液中可直接测量出,与小分子溶质的腹膜转运功能相关 [37]。研究表明,人和小鼠腹膜间皮细胞在稳态条件下表达少量的CTGF [38],腹膜溶质转运高的患者腹腔液中CTGF表达增加,UFF患者腹膜CTGF mRNA表达是尿毒症患者PD前腹膜CTGF mRNA表达的11倍以上。CTGF的表达与PD患者腹膜厚度有很好的相关性 [39]。另外一些实验中新发现的生物标志物,如肿瘤发生抑制蛋白2 (Suppression of Tumorigenicity 2, ST2) [40],其增高是腹膜损伤时纤维化和炎症的标志。动物实验中发现基质金属蛋白酶-2 (Matrix metalloproteinase-2, MMP2)的水平同PF相关。在临床中也发现PF患者腹腔内MMP-2产生增多,MMP-2也可作为PF病理改变的生物标志物 [41]。这些生物标志物给研究者带来了新的研究方向,但是其临床应用还需通过临床试验证据支持。

5. PD相关PF的防治

有研究表明,有些PD患者在开始透析时,已经存在腹膜结构上的不同 [42] [43]。在PD开始之前,尿毒症本身可能也是导致PD患者腹膜病变的原因,所以明确肾衰竭的病因,控制好原发疾病,延缓肾衰竭的进展,尽可能保护残存肾功能对PD的长期开展尤为重要。尽管尿毒症毒素是不可调控的因素,研究证明,口服吸附剂,如活性炭制剂等,可以通过胃肠道途径将毒素排出,进而做到减轻氮质血症对机体的负面影响 [44]。选择生物相容性的腹透液,或添加丙氨酰–谷氨酰胺的腹透液可以降低IL-6、TGF-β1等释放,有效改善PF和腹膜功能。

5.1. 药物治疗

苏尼替尼是一种酪氨酸激酶抑制剂,抑制VEGF信号转导,动物实验表明可以显著抑制PF大鼠TGF-β1、VEGF的过度表达 [45]。同样,VEGF和EGFR抑制剂可抑制血管生成并抑制PD大鼠PF的进展 [16]。体内体外研究表明,雷帕霉素能抑制EMT [46]。Rho抑制剂法舒地尔通过下调TGF-β1、VEGF等的表达来预防PF [47]。波生坦和马西替坦,血管收缩肽内皮素-1受体拮抗剂,显著减轻PD引起的EMT、纤维化、血管生成和腹膜功能下降 [48]。防治腹膜炎是应该关注的重点,PD患者的无菌观念和无菌操作是防治腹膜炎最重要的环节,因为其可控性,通过加强宣教,提高患者依从性可以显著减少腹膜炎的发生。对于腹膜微炎症状态,有研究表明他汀类药物不仅能做到降低血脂水平,对因脂代谢异常引发的慢性肾损害进行纠正,还能明显改善肾脏的结构和功能,延缓CKD的进展。同时还有抗微炎症的作用,如普伐他汀可以显著减少PD患者CRP水平,瑞舒伐他汀可降低血清炎性介质IL-1、IL-6水平 [49]。乌司他丁通过清除氧自由基,提高组织抗氧化酶活力,减轻过氧化造成的损伤,还可能减少IL-6、CTGF等促纤维化因子分泌,减轻炎症反应,抑制PF [50]。

5.2. 中医药防治

中医药在防治PF中也有积极作用,近年来,中医药防治PF的临床及实验研究进展取得很大进展,人们也更关注各种中医药的作用机制,发现其可以通过多靶点减缓EMT,保护腹膜功能。调控细胞因子方面,动物实验表明,大蒜素可减低腹膜中α-SMA、TGF-β1、Smad7及p-ERK1/2表达,减轻大鼠的PF,并且发现有miR-21的下调。姜黄素(姜黄的主要成分)对腹膜EMT的发生及TGF-β1的分泌有一定的抑制作用,能显著下调小鼠PF模型中TGF-β1和CTGF的过度表达 [51]。灵芝多糖(灵芝的主要成分)通过抑制腹膜Smad3、CTGF mRNA和蛋白表达,抑制Smad3/CTGF通路激活减轻PD大鼠PF [52]。动物实验表明黄芪能抑制TGF-β/Smad通路的表达,下调Smad2/3,上调Smad7,起到抑制PF作用。体外研究表明黄芪甲苷(黄芪的主要成分)可减少高糖诱导的HPMC中TGF-β、CTGF、VEGF的表达,并且呈浓度依赖性 [53] [54]。三七、白芍、川芎也是通过抑制TGF-β/Smad通路抑制PF。抗炎方面,丹参酮IIA (丹参的主要成分)可下调腹透液中IL-6、CRP的表达,抑制PD患者微炎症状态 [55]。川芎嗪(川芎的主要成分)通过下调IL-6、IL-8表达,减轻对PMC的损伤 [56]。黄芪甲苷可以抑制NLRP3炎症体的活化抑制EMT,进而拮抗PF [57]。中药复方,如尿毒康合剂(黄芪、白术、茯苓、大黄、川芎、红花、丹参、地榆)、加味六君子汤(黄芪、党参、白术、茯苓、半夏、陈皮、炙甘草、川芎、丹参、菟丝子)、扶肾颗粒(黄芪、当归、淫羊藿、陈皮、半夏、丹参、熟大黄)、肾康注射液(大黄、黄芪、丹参、红花)、健脾益气方(黄芪、党参、白术、茯苓、炙甘草、川芎、葛根)、肾疏宁方(柴胡、黄芩、生黄芪、山茱萸、扁蓄、白花蛇舌草、丹参、益母草)、小柴胡汤合五苓散(黄芪、党参、白术、丹参、柴胡、炒黄芩、茯苓、泽泻、枳实、旱莲草、酒大黄、生半夏、川芎)等可通过多个靶点防治PF。

6. 总结

腹膜透析是终末期肾脏病患者很好的选择,但是其腹膜纤维化的发生限制了其广泛长期应用。腹膜透析相关腹膜纤维化的发生发展是个复杂的过程,其具体机制还需进一步研究探讨,通过机制的研究深入推动其诊断、治疗的新进展。多种非编码RNA在PF的发病机制中起重要作用。基因水平的治疗也是现代研究领域的一大热点,对目的基因转录水平和转录后水平修饰的调节,如促进关键基因的表达或使其沉默等手段,也可能成为PF的治疗方法,但是其开展需在更深一步的机制研究的基础上,距其临床应用及推广还有较远的路要走。

文章引用

张胜勋,徐 璐,杜保川,李新建. 腹膜透析相关腹膜纤维化的研究进展
Advances in Peritoneal Dialysis-Related Peritoneal Fibrosis[J]. 临床医学进展, 2022, 12(02): 820-827. https://doi.org/10.12677/ACM.2022.122119

参考文献

  1. 1. Hiramatsu, T., Okumura, S., Asano, Y., et al. (2019) Quality of Life and Emotional Distress in Peritoneal Dialysis and Hemodialysis Patients. Therapeutic Apheresis and Dialysis, 24, 366-372. https://doi.org/10.1111/1744-9987.13450

  2. 2. Klarenbach, S.W., Tonelli, M., Chui, B. and Manns, B.J. (2014) Economic Evaluation of Dialysis Therapies. Nature Reviews Nephrology, 10, 644-652. https://doi.org/10.1038/nrneph.2014.145

  3. 3. Kendrick, J. and Teitelbaum, I. (2010) Strategies for Improving Long-Term Survival in Peritoneal Dialysis Patients. Clinical Journal of the American Society of Nephrology, 5, 1123-1131. https://doi.org/10.2215/CJN.04300709

  4. 4. Krediet, R.T., Lindholm, B. and Rippe, B. (2000) Pathophysiology of Peritoneal Membrane Failure. Peritoneal Dialysis International, 20, S22-S42. https://doi.org/10.1177/089686080002004S03

  5. 5. 方炜, 钱家麒, 余志远, 林爱武, 陈诗书. 腹膜透析对人腹膜形态结构的影响[J]. 中华肾脏病杂志, 2002(6): 41-45.

  6. 6. Qayyum, A., Oei, E.L., Paudel, K. and Fan, S.L. (2015) Increasing the Use of Biocompatible, Glucose-Free Peritoneal Dialysis Solutions. World Journal of Nephrology, 4, 92-97. https://doi.org/10.5527/wjn.v4.i1.92

  7. 7. Morelle, J., Sow, A., Hautem, N., et al. (2015) Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis. Journal of the American Society of Nephrology, 26, 2521-2533. https://doi.org/10.1681/ASN.2014090939

  8. 8. Devuyst, O., Margetts, P.J. and Topley, N. (2010) The Pathophysiology of the Peritoneal Membrane. Journal of the American Society of Nephrology, 21, 1077-1085. https://doi.org/10.1681/ASN.2009070694

  9. 9. Schilte, M.N., Celie, J.W., Wee, P.M., Beelen, R.H. and van den Born, J. (2009) Factors Contributing to Peritoneal Tissue Remodeling in Peritoneal Dialysis. Peritoneal Dialysis International, 29, 605-617. https://doi.org/10.1177/089686080902900604

  10. 10. De Vriese, A.S., Tilton, R.G., Stephan, C.C. and Lameire, N.H. (2001) Vascular Endothelial Growth Factor Is Essential for Hyperglycemia-Induced Structural and Functional Alterations of the Peritoneal Membrane. Journal of the American Society of Nephrology, 12, 1734-1741. https://doi.org/10.1681/ASN.V1281734

  11. 11. Aroeira, L.S., Aguilera, A., Selgas, R., et al. (2005) Mesenchymal Conversion of Mesothelial Cells as a Mechanism Responsible for High Solute Transport Rate in Peritoneal Dialysis: Role of Vascular Endothelial Growth Factor. American Journal of Kidney Diseases, 46, 938-948. https://doi.org/10.1053/j.ajkd.2005.08.011

  12. 12. Kariya, T., Nishimura, H., Mizuno, M., et al. (2018) TGF-β1-VEGF-A Pathway Induces Neoangiogenesis with Peritoneal Fibrosis in Patients Undergoing Peritoneal Dialysis. The American Journal of Physiology-Renal Physiology, 314, F167-F180. https://doi.org/10.1152/ajprenal.00052.2017

  13. 13. Kitterer, D., Latus, J., Ulmer, C., Fritz, P., Biegger, D., Ott, G., Alscher, M.D., Witowski, J., Kawka, E., Jörres, A., Seeger, H., Segerer, S. and Braun, N. (2015) Activation of Nuclear Factor of Activated T Cells 5 in the Peritoneal Membrane of Uremic Patients. The American Journal of Physiology-Renal Physiology, 308, F1247-F1258. https://doi.org/10.1152/ajprenal.00617.2014

  14. 14. Aroeira, L.S., Aguilera, A., Sánchez-Tomero, J.A., Bajo, M.A., del Peso, G., Jiménez-Heffernan, J.A., Selgas, R. and López-Cabrera, M. (2007) Epithelial to Mesenchymal Transition and Peritoneal Membrane Failure in Peritoneal Dialysis Patients: Pathologic Significance and Potential Therapeutic Interventions. Journal of the American Society of Nephrology, 18, 2004-2013. https://doi.org/10.1681/ASN.2006111292

  15. 15. Derynck, R. and Zhang, Y.E. (2003) Smad-Dependent and Smad-Independent Pathways in TGF-Beta Family Signalling. Nature, 425, 577-584. https://doi.org/10.1038/nature02006

  16. 16. Peng, W., Dou, X., Hao, W., et al. (2013) Smad7 Gene Transfer Attenuates Angiogenesis in Peritoneal Dialysis Rats. Nephrology (Carlton), 18, 138-147. https://doi.org/10.1111/nep.12017

  17. 17. Wang, X., Li, X., Ye, L., Chen, W. and Yu, X. (2013) Smad7 Inhibits TGF-β1-Induced MCP-1 Upregulation through a MAPK/p38 Pathway in Rat Peritoneal Mesothelial Cells. International Urology and Nephrology, 45, 899-907. https://doi.org/10.1007/s11255-012-0350-6

  18. 18. Liang, H., Xu, F., Zhang, T., et al. (2018) Inhibition of IL-18 Reduces Renal Fibrosis after Ischemia-Reperfusion. Biomedicine & Pharmacotherapy, 106, 879-889. https://doi.org/10.1016/j.biopha.2018.07.031

  19. 19. Guo, J., Gu, N., Chen, J., et al. (2013) Neutralization of Interleukin-1 Beta Attenuates Silica-Induced Lung Inflammation and Fibrosis in C57BL/6 Mice. Archives of Toxicology, 87, 1963-1973. https://doi.org/10.1007/s00204-013-1063-z

  20. 20. Liakopoulos, V., Roumeliotis, S., Gorny, X., Eleftheriadis, T. and Mertens, P.R. (2017) Oxidative Stress in Patients Undergoing Peritoneal Dialysis: A Current Review of the Literature. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 3494867. https://doi.org/10.1155/2017/3494867

  21. 21. Puttinger, H. (2013) Peritoneal Dialysis—An Ideal Initial Dialysis Mode. Wiener Medizinische Wochenschrift, 163, 271-279. https://doi.org/10.1007/s10354-013-0200-x

  22. 22. Kato, S., Yuzawa, Y., Tsuboi, N., et al. (2004) Endotoxin-Induced Chemokine Expression in Murine Peritoneal Mesothelial Cells: The Role of Toll-Like Receptor 4. Journal of the American Society of Nephrology, 15, 1289-1299.

  23. 23. Hautem, N., Morelle, J., Sow, A., et al. (2017) The NLRP3 Inflammasome Has a Critical Role in Peritoneal Dialysis-Related Peritonitis. Journal of the American Society of Nephrology, 28, 2038-2052. https://doi.org/10.1681/ASN.2016070729

  24. 24. Pecoits-Filho, R., Araújo, M.R., Lindholm, B., et al. (2002) Plasma and Dialysate IL-6 and VEGF Concentrations Are Associated with High Peritoneal Solute Transport Rate. Nephrology Dialysis Transplantation, 17, 1480-1486. https://doi.org/10.1093/ndt/17.8.1480

  25. 25. Yang, X., Yan, H., Jiang, N., et al. (2020) IL-6 Trans-Signaling Drives a STAT3-Dependent Pathway That Leads to Structural Alterations of the Peritoneal Membrane. The American Journal of Physiology-Renal Physiology, 318, F338-F353. https://doi.org/10.1152/ajprenal.00319.2019

  26. 26. Rodrigues-Díez, R., Aroeira, L.S., Orejudo, M., et al. (2014) IL-17A Is a Novel Player in Dialysis-Induced Peritoneal Damage. Kidney International, 86, 303-315. https://doi.org/10.1038/ki.2014.33

  27. 27. Shang, J., He, Q., Chen, Y., et al. (2019) miR-15a-5p Suppresses Inflammation and Fibrosis of Peritoneal Mesothelial Cells Induced by Peritoneal Dialysis via Targeting VEGFA. Journal of Cellular Physiology, 234, 9746-9755. https://doi.org/10.1002/jcp.27660

  28. 28. Che, M., Shi, T., Feng, S., et al. (2017) The MicroRNA-199a/214 Cluster Targets E-Cadherin and Claudin-2 and Promotes High Glucose-Induced Peritoneal Fibrosis. Journal of the American Society of Nephrology, 28, 2459-2471. https://doi.org/10.1681/ASN.2016060663

  29. 29. Gao, Q., Xu, L., Yang, Q. and Guan, T.J. (2019) MicroRNA-21 Contributes to High Glucose-Induced Fibrosis in Peritoneal Mesothelial Cells in Rat Models by Activation of the Ras-MAPK Signaling Pathway via Sprouty-1. Journal of Cellular Physiology, 234, 5915-5925. https://doi.org/10.1002/jcp.26941

  30. 30. Wu, J., Huang, Q., Li, P., et al. (2019) MicroRNA-145 Promotes the Epithelial-Mesenchymal Transition in Peritoneal Dialysis-Associated Fibrosis by Suppressing Fibroblast Growth Factor 10. Journal of Biological Chemistry, 294, 15052-15067. https://doi.org/10.1074/jbc.RA119.007404

  31. 31. 李勰家, 周循, 孙林, 刘伏友, 肖力, 刘虹, 张磊. MicroRNA-302c通过结缔组织生长因子调控腹膜透析相关腹膜纤维化[J]. 中国血液净化, 2019, 18(3): 192-196.

  32. 32. Karagur, E.R., Ozay, C., Mammadov, R. and Akca, H. (2018) Anti-Invasive Effect of Cyclamen pseudibericum Extract on A549 Non-Small Cell Lung Carcinoma Cells via Inhibition of ZEB1 Mediated by miR-200c. Journal of Natural Medicines, 72, 686-693. https://doi.org/10.1007/s11418-018-1204-z

  33. 33. Wei, X., Huang, H., Bao, Y., et al. (2019) Novel Long Non-Coding RNA AV310809 Promotes TGF-β1 Induced Epithelial-Mesenchymal Transition of Human Peritoneal Mesothelial Cells via Activation of the Wnt2/β-Catenin Signaling Pathway. Biochemical and Biophysical Research Communications, 513, 119-126. https://doi.org/10.1016/j.bbrc.2019.03.071

  34. 34. Zhang, X.W., Wang, L. and Ding, H. (2019) Long Noncoding RNA AK089579 Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Competitively Binding to microRNA-296-3p via DOK2 in Peritoneal Fibrosis. FASEB Journal, 33, 5112-5125. https://doi.org/10.1096/fj.201801111RR

  35. 35. Szeto, C.-C., Chow, K.-M., Lam, C.W.-K., Leung, C.B., Kwan, B.C.-H., Chung, K.-Y., Law, M.-C. and Li, P.K.-T. (2007) Clinical Biocompatibility of a Neutral Peritoneal Dialysis Solution with Minimal Glucose-Degradation Products—A 1-Year Randomized Control Trial. Nephrology Dialysis Transplantation, 22, 552-559. https://doi.org/10.1093/ndt/gfl559

  36. 36. Lopes, B.D., Coester, A.M., Noordzij, M., Smit, W., Struijk, D.G., Rogers, S., de Waart Dirk, R. and Krediet, R.T. (2011) Variability of Effluent Cancer Antigen 125 and Interleukin-6 Determination in Peritoneal Dialysis Patients. Nephrology Dialysis Transplantation, 26, 3739-3744. https://doi.org/10.1093/ndt/gfr170

  37. 37. Evans, I. (2015) An Overview of VEGF-Mediated Signal Transduction. Methods in Molecular Biology, 1332, 91-120. https://doi.org/10.1007/978-1-4939-2917-7_7

  38. 38. Sakai, N., Chun, J., Duffield, J.S., Wada, T., Luster, A.D. and Tager, A.M. (2013) LPA1-Induced Cytoskeleton Reorganization Drives Fibrosis through CTGF-Dependent Fibroblast Proliferation. FASEB Journal, 27, 1830-1846. https://doi.org/10.1096/fj.12-219378

  39. 39. Abrahams, A.C., Habib, S.M., Dendooven, A., et al. (2014) Patients with Encapsulating Peritoneal Sclerosis Have Increased Peritoneal Expression of Connective Tissue Growth Factor (CCN2), Transforming Growth Factor-β1, and Vascular Endothelial Growth Factor. PLoS ONE, 9, e112050. https://doi.org/10.1371/journal.pone.0112050

  40. 40. Kim, Y.C., Kim, K.H., Lee, S., Jo, J.-W., Park, J.Y., Park, M.-S., Tsogbadrakh, B., Lee, J.P., Lee, J.W., Kim, D.K., Oh, K.-H., Jang, I.-J., Kim, Y.S., Cha, R.-H. and Yang, S.H. (2019) ST2 Blockade Mitigates Peritoneal Fibrosis Induced by TGF-β and High Glucose. Journal of Cellular and Molecular Medicine, 23, 6872-6884. https://doi.org/10.1111/jcmm.14571

  41. 41. Barreto, D.L., Coester, A.M., Struijk, D.G. and Krediet, R.T. (2013) Can Effluent Matrix Metalloproteinase 2 and Plasminogen Activator Inhibitor 1 Be Used as Biomarkers of Peritoneal Membrane Alterations in Peritoneal Dialysis Patients? Peritoneal Dialysis International, 33, 529-537. https://doi.org/10.3747/pdi.2012.01063

  42. 42. Sampimon, D.E., Coester, A.M., Struijk, D.G. and Krediet, R.T. (2011) The Time Course of Peritoneal Transport Parameters in Peritoneal Dialysis Patients Who Develop Encapsulating Peritoneal Sclerosis. Nephrology Dialysis Transplantation, 26, 291-298. https://doi.org/10.1093/ndt/gfq343

  43. 43. Reyes, M.-J.F., Bajo, M.-A., Hevía, C., Del Peso, G., Ros, S., de Miguel, A.G., Cirugeda, A., Castro, M.-J., Sánchez-Tomero, J.A. and Selgas, R. (2007) Inherent High Peritoneal Transport and Ultrafiltration Deficiency: Their Mid-Term Clinical Relevance. Nephrology Dialysis Transplantation, 22, 218-223. https://doi.org/10.1093/ndt/gfl529

  44. 44. Setyapranata, S. and Holt, S.G. (2015) The Gut in Older Patients on Peritoneal Dialysis. Peritoneal Dialysis International, 35, 650-654. https://doi.org/10.3747/pdi.2014.00341

  45. 45. Bozkurt, D., Sarsik, B., Hur, E., et al. (2011) A Novel Angiogenesis Inhibitor, Sunitinib Malate, in Encapsulating Peritoneal Sclerosis. Journal of Nephrology, 24, 359-365. https://doi.org/10.5301/JN.2011.6257

  46. 46. Washida, N., Wakino, S., Tonozuka, Y., et al. (2011) Rho-Kinase Inhibition Ameliorates Peritoneal Fibrosis and Angiogenesis in a Rat Model of Peritoneal Sclerosis. Nephrology Dialysis Transplantation, 26, 2770-2779. https://doi.org/10.1093/ndt/gfr012

  47. 47. Peng, W., Zhou, Q., Ao, X., Tang, R. and Xiao, Z. (2013) Inhibition of Rho-Kinase Alleviates Peritoneal Fibrosis and Angiogenesis in a Rat Model of Peritoneal Dialysis. Renal Failure, 35, 958-966. https://doi.org/10.3109/0886022X.2013.808565

  48. 48. Busnadiego, O., Loureiro-Álvarez, J., Sandoval, P., et al. (2015) A Pathogenetic Role for Endothelin-1 in Peritoneal Dialysis-Associated Fibrosis. Journal of the American Society of Nephrology, 26, 173-182. https://doi.org/10.1681/ASN.2013070799

  49. 49. 周瑛, 傅鹏. 他汀类药物对肾脏保护作用的研究进展[J]. 医学综述, 2016, 22(8): 1547-1550.

  50. 50. 熊燕移, 李敏芝, 史伟文, 张莞灵, 卓华钦. 乌司他丁对腹膜透析相关性腹膜纤维化大鼠细胞因子表达的影响[J]. 中华实用诊断与治疗杂志, 2016, 30(8): 747-749.

  51. 51. Zhao, J.L., Zhang, T., Shao, X., Zhu, J.J. and Guo, M.Z. (2019) Curcumin Ameliorates Peritoneal Fibrosis via Inhibition of Transforming Growth Factor-Activated Kinase 1 (TAK1) Pathway in a Rat Model of Peritoneal Dialysis. BMC Complementary and Alternative Medicine, 19, 280. https://doi.org/10.1186/s12906-019-2702-6

  52. 52. 陈珊珊, 岳英丽, 刘东海. 灵芝多糖对腹膜透析大鼠Smad3/CTGF通路及腹膜纤维化的影响[J]. 中国药师, 2021, 24(2): 247-251.

  53. 53. Li, Z., Zhang, L., He, W., Zhu, C., Yang, J. and Sheng, M. (2014) Astragalus Membranaceus Inhibits Peritoneal Fibrosis via Monocyte Chemoattractant Protein (MCP)-1 and the Transforming Growth Factor-β1 (TGF-β1) Pathway in Rats Submitted to Peritoneal Dialysis. International Journal of Molecular Sciences, 15, 12959-12971. https://doi.org/10.3390/ijms150712959

  54. 54. 杨劲松, 李正红, 张旭, 盛梅笑. 黄芪甲苷对高糖腹膜透析液诱导人腹膜间皮细胞表达致纤维化因子的影响[J]. 中国中医药信息杂志, 2014, 21(7): 36-39.

  55. 55. 寿苗林, 李素波, 张小云. 丹参酮IIA对腹膜透析患者慢性炎症的调节作用[J]. 医学研究杂志, 2015, 44(2): 130-132.

  56. 56. 陈利涛. 川芎嗪对高糖或TNFα诱导后人腹膜间皮细胞IL6和IL8表达影响的实验研究[D]: [硕士学位论文]. 南京: 南京中医药大学, 2011.

  57. 57. 张露. 黄芪甲苷干预腹膜间皮细胞表型转化的分子机制研究[D]: [博士学位论文]. 南京: 南京中医药大学, 2017.

期刊菜单