﻿ 基于云模型的智能变电站二次设备状态评估 Smart Substation Secondary Equipment Condition Assessment Based on Cloud Model

Smart Grid
Vol.05 No.06(2015), Article ID:16707,9 pages
10.12677/SG.2015.56042

Smart Substation Secondary Equipment Condition Assessment Based on Cloud Model

Hongbin Wang1, Hong Zhao2, Yan He1, Jinxin Ouyang2, Qiaobo Liu2, Youqiang Zhang1

1Chongqing Electric Power Research Institute, Chongqing

2Chongqing University, Chongqing

Received: Dec. 12th, 2015; accepted: Dec. 24th, 2015; published: Dec. 31st, 2015

ABSTRACT

Substation secondary equipment condition assessment is the basis to realize condition maintenance, and the key ensuring the safe operation of the equipment. However, the mechanism of secondary equipment fault is complex, which may have recessive fault, and the index required is more complex. This paper proposes a new method for smart substation secondary equipment condition assessment based on Cloud Model, establishes evaluation flow process, divides the condition level, and uses the analytic hierarchy process and varied weight process. The results show that this method can evaluate the smart substation secondary equipment condition more accurately, and provide theoretical basis for the maintenance of it.

Keywords:Smart Substation, Cloud Model, Condition Assessment, Analytic Hierarchy Process

1重庆市电力公司电力科学研究院，重庆

2重庆大学，重庆

1. 引言

Figure 1. The signal of secondary system

Figure 2. Intelligent substation secondary system

Figure 3. Condition evaluation indices system

2. 智能变电站二次设备云模型评价方法

2.1. 智能变电站二次设备状态等级划分

(1)

(2)

2.2. 云模型评价方法

1) 根据云的数字特征，(Ex, En, He)生成以期望为En，标准差为He的正态随机数

2) 生成一个以期望为Ex，标准差为En的绝对值的正态随机数x，x就称为论域空间U上的一个云滴；

3) 根据1)和2)计算x属于定性概念C的确定度u：

4) 重复1)~3)步，直到产生N个云滴为止。

Table 1. Graded table of condition indicators

Figure 4. Normal cloud model

2.3. 基于云模型智能变电站二次设备状态评估

2.3.1. 指标权重

(3)

2.3.2. 智能变电站二次设备状态评估流程

2.3.3. 单因素评估方法

(4)

2.4. 状态等级确定

(5)

Table 2. Weights of assessment indices

Table 3. Digital characteristic of cloud mode

Figure 5. Flow chart of status assessment

Figure 6. Cloud model membership

2.5. 定性状态指标隶属度

(6)

3. 算例分析

3.1. 基本监测指标评估

3.2. 其他各项指标评估

Table 4. Degree of U1 membership

Table 5. Evaluation of expert group on output accuracy index

Table 6. Degree of all indices membership

4. 结论

Smart Substation Secondary Equipment Condition Assessment Based on Cloud Model[J]. 智能电网, 2015, 05(06): 347-355. http://dx.doi.org/10.12677/SG.2015.56042

1. 1. 李孟超, 王允平, 李献伟, 等. 智能变电站及技术特点分析[J]. 电力系统保护与控制, 2010, 38(18): 59-61.

2. 2. 李明, 韩学山, 王勇, 等. 变电站状态检修决策模型与求解[J]. 中国电机工程学报, 2012, 32(25): 196-202.

3. 3. 王洪飞, 施绮. 基于故障树(FTA)方法的二次系统项目评估方法研究[J]. 华东电力, 2014, 42(12): 2747-2750.

4. 4. Dai, Z.H., Li, Z.J., Jiao, Y.J., et al. (2014) Reliability Assessment Based on BP Neural Network for Relay Protection System with a Few Failure Data Samples. Electric Power Automation Equipment, 11, 129-134.

5. 5. 雷兴列, 盛戈皞, 严英杰, 等. 基于组合赋权与D-S证据理论的变压器状态评估[J]. 华东电力, 2013, 41(10): 2023-2027.

6. 6. 郑蕊蕊, 赵继印, 吴宝春, 等. 基于加权灰靶理论的电力变压器绝缘状态分级评估方法[J]. 电工技术学报, 2008, 23(8): 60-66.

7. 7. 张镱议, 廖瑞金, 杨丽君, 等. 基于云理论的电力变压器绝缘状态评估方法[J]. 电工技术学报, 2012, 27(5): 13- 20.

8. 8. 张友强, 熊小伏, 欧阳金鑫, 等. 基于灰色层次聚类的智能变电站二次设备状态评估[J]. 重庆大学学报, 2015(1): 23-28.

9. 9. 王晓亮, 董海鹰, 任伟. 基于信息融合的750 kV电网二次设备状态评估[J]. 电力系统及其自动化学报, 2013, 25(1): 40-46.