Pharmacy Information
Vol. 10  No. 03 ( 2021 ), Article ID: 42712 , 5 pages
10.12677/PI.2021.103020

高尿酸血症及尿酸盐转运蛋白研究进展

王 聪,陈建华*

中国药科大学生命科学与技术学院,江苏 南京

收稿日期:2021年4月26日;录用日期:2021年5月20日;发布日期:2021年5月27日

摘要

高尿酸血症(hyperuricemia, HUA)及痛风以往被认为是由于人体嘌呤代谢异常所导致的代谢性风湿病。2002年,Enomoto等人描述了第一个肾脏尿酸盐转运蛋白URAT1 (urate anion transporter 1),之后,越来越多的尿酸盐转运蛋白被表征,高尿酸血症不再是一种代谢性疾病,而是一种“转运疾病”。本篇综述回顾了近几年与HUA及尿酸盐转运蛋白相关的国内外研究文献,对尿酸盐转运蛋白与HUA疾病的相关关系进行总结。

关键词

高尿酸血症,痛风,尿酸盐转运蛋白

Research Progress of Hyperuricemia and Urate Transporter

Cong Wang, Jianhua Chen*

School of Life Science and Technology, China Pharmaceutical University, Nanjing Jiangsu

Received: Apr. 26th, 2021; accepted: May 20th, 2021; published: May 27th, 2021

ABSTRACT

Hyperuricemia and gout were previously thought to be metabolic rheumatism caused by abnormal purine metabolism in the body. In 2002, Enomoto et al. described the first renal urate transporter URAT1. Since then, more and more urate transporters have been characterized. Hyperuricemia is no longer a metabolic disease, but a “transport disease”. This review reviews the domestic and foreign research literature related to HUA and urate transporter in recent years, and summarizes the relationship between urate transporter and HUA disease.

Keywords:Hyperuricemia, Gout, Urate Transporter

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 高尿酸血症及痛风现状

在正常嘌呤饮食状态下,非同日两次空腹血尿酸水平高于420 μmol/L (7 mg/dL),即称为高尿酸血症。人体内缺乏将微溶于水的尿酸分解为高度可溶的尿囊素的尿酸酶,因此是高尿酸血症及痛风的易感物种。高尿酸血症是引发痛风的直接原因,也是引发高血压、糖尿病、心血管疾病的独立危险因素 [1]。

当血清尿酸浓度超过血清的溶解能力(6.8 mg/dL)时,单钠尿酸盐在皮肤、关节腔内或软组织中呈晶体状沉积,就会诱发痛风这一最普遍的代谢性风湿病。痛风是全球性的疾病,我国痛风整体患病率为1%~3%,呈现逐年上升趋势;且痛风患者平均年龄为48.28岁(男性47.95岁,女性53.14岁),逐步呈现年轻化的趋势 [2]。

目前市场上用来降尿酸治疗的药物主要分为三类:(1) 抑制尿酸生成药物;(2) 抑制尿酸重吸收药物;(3) 尿酸酶类药物。其中,抑制尿酸重吸收药物主要是通过抑制肾脏重吸收转运体URAT1发挥作用:苯溴马隆(Benzbromarone)具有抑制肾小管对尿酸的重吸收作用,间接增加肾脏尿酸排泄。但是苯溴马隆在白种人中治疗患者时引起爆发性肝坏死,2003年撤出欧洲市场,美国FDA没有批准该药上市 [3]。丙磺舒(Probenecid)主要在痛风发作间期和慢性期使用以控制高尿酸血症,但是对磺胺类过敏及肾功能不全者禁用本品,同时丙磺舒的使用也受到尿石症相关风险的限制 [4]。

在健康个体中,大约70%的尿酸是通过肾脏排泄,其余30%的尿酸在人体肠道排泄或经肠道菌群分解 [5]。肾脏中尿酸盐的外排存在重吸收和排泄两条途径,人体内95%的尿酸盐在肾小球内自由过滤,经过重吸收与再分泌等过程,约10%经过滤的尿酸盐随尿液排出 [6]。尿酸在pH 7.4的生理条件下,以不能通过生物膜扩散的阴离子形式存在,因此循环的尿酸必须与转运蛋白结合才能得以清除 [7],因此尿酸转运蛋白的功能对控制血清尿酸水平具有重要意义。

2. 尿酸盐重吸收转运体

URAT1是OATs (organic anion transporters)家族成员,编码基因为SLC22A12,URAT1是一个12跨膜结构域蛋白,主要在肾脏近端小管上皮细胞的顶端刷缘膜上表达。利用管腔两侧的浓度梯度和化学梯度差将尿酸盐从近端肾小管腔内转运到肾小管上皮细胞,这是尿酸盐重吸收的第一步 [8]。研究表明URAT1只在肾脏组织中表达,是参与尿酸盐重吸收的最重要的转运体。URAT1发生功能缺失突变将导致尿酸盐重吸收功能障碍,导致1型肾低尿酸血症 [9]。此外,URAT1中的单核苷酸多态性(single nucleotide polymorphism, SNP)被证实与代谢综合征的发病机制有关,包括肥胖、低高密度脂蛋白胆固醇、腰围增加和原发性高血压。

GLUT9 (glucose transporter 9)的编码基因为SLC2A9,有两种剪切变异体:长型异构体(GLUT9L)和短型异构体(GLUT9S),主要分布于肝脏、肾脏和胎盘,在小肠和结肠几个组织中表达水平较低。在肾近曲小管中,GLUT9L位于基底膜侧,而GLUT9S位于管腔侧膜 [10]。已有研究表明,GLUT9S具有较高的尿酸盐转运能力,并能从肾小管腔内重新吸收尿酸盐,而GLUT9L主要负责尿酸盐的外排 [11]。GLUT9失活突变降低肾近端小管细胞对尿酸的重吸收从而引起2型肾低尿酸血症 [12]。

OAT4 (由SLC22A11基因编码)是一种多特异性阴离子转运蛋白,存在于近端小管上皮细胞的顶端膜中,它参与了腔内尿酸盐重吸收的机制。OAT10 (由SLC22A13基因编码)是一种尿酸盐和高亲和性烟酸转运蛋白,表达于大鼠近端小管刷缘膜泡及皮质集合管中。

3. 尿酸盐排泄转运体

ATP结合盒亚家族G成员2 (ATP-binding cassette subfamily G member 2, ABCG2),也称为乳腺癌抵抗蛋白(breast cancer resistance protein, BCRP),它以ATP依赖性的方式介导尿酸盐排泄。它在肾脏近曲小管刷状缘膜中表达,但主要在肠、胎盘和睾丸等组织中高表达 [13]。ABCG2在全身尿酸盐清除总量中至少占40%,其功能障碍引起的肠尿酸盐排泄不足将导致肾尿酸盐排泄过载,并累及肾低排型高尿酸血症,是高尿酸血症和痛风的主要病因 [14]。ABCG2敲除小鼠肠道尿酸排泄显著减少,血浆尿酸浓度升高(P < 0.05)。

阴离子转运体多药耐药蛋白4 (multidrug resistance protein, MRP4)即ABC转运蛋白4 (ATP-binding cassette subfamily C member 4, ABCC4),可以转运体内各种内源性物质以及尿酸盐的转运。它广泛分布于人体正常组织,在肾脏、肝脏、小肠等器官较为丰富,在人皮肤中有表达 [15]。MRP4基因突变导致患者血尿酸水平显著升高,尿尿酸水平下降,从而导致患者高尿酸血症和痛风的症状 [16]。

生电型尿酸盐/阴离子交换体(urate transporter, UAT),介导尿酸盐从近曲小管分泌进入管腔,主要表达于肾脏和肠道。

OATs家族中两个成员OAT1或OAT3的主要功能是控制尿液分泌,将尿酸盐从肾间质转运至肾小管上皮细胞。OAT1主要存在于肾脏中,OAT3主要存在于肾脏、肝脏、大脑和眼睛等器官中。OAT1或OAT3可轻微降低尿量,提示其主要功能是排泄尿酸 [17]。

钠依赖性磷酸转运蛋白(Na+ dependent phosphate transporter, NPT),编码基因为SLC17,NPT1、NPT4在小肠中均有表达,参与尿酸盐的分泌,也介导有机阴离子跨膜转运,能将尿酸盐分泌到肾小管管腔。NPT1在肾近曲小管上皮细胞顶膜上表达,NTP1基因突变显著增加了血清尿酸,导致痛风的发生,而另一种突变被证明增加了尿酸盐的最大转运能力而导致了在痛风患者的肾近曲小管中尿酸盐排泄增加 [18];NPT4在肾近曲小管上皮细胞顶膜及肝脏表达,携带SNPs的NPT4变异的人,尿酸盐的排泄量明显减少 [19]。

PDZ结构域蛋白1 (PDZ domain-containing 1, PDZK1)是一种较特殊的辅助蛋白,通过结构域与ABCG2等尿酸盐排泄转运蛋白共同作用,在体内广泛表达,在肾脏、肝脏及胃肠道均有发现 [20]。

4. 总结与展望

目前主要通过药物抑制尿酸的合成及重吸收来治疗HUA及痛风,但随着人们对HUA及痛风的愈发了解,注意力逐渐转移到尿酸排泄这一途径上来。当高尿酸血症的患者出现肾功能不全的症状时,肾外尿酸排泄途径似乎可以成为维持尿酸水平的重要途径。例如,将Wistar大鼠切除5/6肾脏之后,其空肠和回肠的ABCG2的mRNA表达量上升 [21]。因此,当动物机体肾脏组织受损时,肠道会起到代偿性排泄尿酸的作用。这或许为高尿酸血症和痛风患者提供了一种新的治疗途径。

文章引用

王 聪,陈建华. 高尿酸血症及尿酸盐转运蛋白研究进展
Research Progress of Hyperuricemia and Urate Transporter[J]. 药物资讯, 2021, 10(03): 147-151. https://doi.org/10.12677/PI.2021.103020

参考文献

  1. 1. Hisakazu, K., Yamada, K. and Tamai, I. (2018) Hyperuricemia Enhances Intracellular Urate Accumulation via Down-Regulation of Cell-Surface BCRP/ABCG2 Expression in Vascular Endothelial Cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1860, 973-980. https://doi.org/10.1016/j.bbamem.2018.01.006

  2. 2. 曾小峰, 陈耀龙. 2016中国痛风诊疗指南[J]. 浙江医学, 2017, 39(21): 1823-1832.

  3. 3. Haring, B., Kudlich, T., Rauthe, S., Melcher, R. and Geier, A. (2013) Benzbromarone: A Double-Edged Sword That Cuts the Liver? European Journal of Gastroenter-ology & Hepatology, 25, 119-121. https://doi.org/10.1097/MEG.0b013e328358ace9

  4. 4. Khanna, P.P. (2018) Gout: A Patrician Malady No More. The Lancet Diabetes & Endocrinology, 6, 263-264. https://doi.org/10.1016/S2213-8587(18)30073-1

  5. 5. Vitetta, L. and Gobe, G. (2013) Uremia and Chronic Kidney Disease: The Role of the Gut Microflora and Therapies with Pro-and Prebiotics. Molecular Nutrition & Food Research, 57, 824-832. https://doi.org/10.1002/mnfr.201200714

  6. 6. Wang, Z., Cui, T., Ci, X., Zhao, F., Sun, Y., Li, Y., et al. (2019) The Effect of Polymorphism of Uric Acid Transporters on Uric Acid Transport. Journal of Nephrology, 32, 177-187. https://doi.org/10.1007/s40620-018-0546-7

  7. 7. Ristic, B., Omar Faruk Sikder, M., Bhutia, Y. and Ga-napathy, V. (2020) Pharmacologic Inducers of the Uric Acid Exporter ABCG2 as Potential Drugs for Treatment of Gouty Arthritis. Asian Journal of Pharmaceutical Sciences, 15, 173-180. https://doi.org/10.1016/j.ajps.2019.10.002

  8. 8. Takeo, N., Kouhei, O., Sho, S., Anzai, N. and Tamai, I. (2013) Functional Cooperation of URAT1 (SLC22A12) and URATv1 (SLC2A9) in Renal Reabsorption of Urate. Nephrol Dial Transplant, 28, 603-611. https://doi.org/10.1093/ndt/gfs574

  9. 9. Eleftheriadis, T., GolpHinopoulos, S., Pissas, G. and Stefanidis, I. (2017) Asymptomatic Hyperuricemia and Chronic Kidney Disease: Narrative review of A Treatment Controversial. Journal of Advanced Research, 8, 555-560. https://doi.org/10.1016/j.jare.2017.05.001

  10. 10. Witkowska, K., Smith, K.M., Yao, S.Y.M., Ng, A.M.L., O’Neill, D., Karpinski, E., et al. (2012) Human SLC2A9a and SLC2A9b Isoforms Mediate Electrogenic Transport of Urate with Different Characteristics in the Presence of Hexoses. American Journal of Physiology-Renal Physiology, 303, F527-F539. https://doi.org/10.1152/ajprenal.00134.2012

  11. 11. Dinour, D., Gray, N.K., Campbell, S., Shu, X., Sawyer, L., Richardson, W., et al. (2010) Homozygous SLC2A9 Mutations Cause Severe Renal Hypouricemia. Journal of the Amer-ican Society of Nephrology, 21, 64-72. https://doi.org/10.1681/ASN.2009040406

  12. 12. Kawamura, Y., Matsuo, H., Chiba, T., Nagamori, S., Nakayama, A., Inoue, H., et al. (2011) Pathogenic GLUT9 Mutations Causing Renal Hypouricemia Type 2 (RHUC2). Nucleosides, Nucleotides & Nucleic Acids, 30, 1105-1111. https://doi.org/10.1080/15257770.2011.623685

  13. 13. Woodward, O.M., Kottgen, A., Coresh, J., Boerwinkle, E., Guggino, W.B. and Köttgen, M. (2009) Identification of a Urate Transporter, ABCG2, with a Common Functional Pol-ymorphism Causing Gout. Proceedings of the National Academy of Sciences of the United States of America, 106, 10338-10342. https://doi.org/10.1073/pnas.0901249106

  14. 14. Kazumasa, Y., Takeshi, T., Akihiko, K., Köttgen, A., Folsom, A.R. and Iso, H. (2010) The rs2231142 Variant of the ABCG2 Gene Is Associated with Uric Acid Levels and Gout among Japanese People. Rheumatology, 49, 1461-1465. https://doi.org/10.1093/rheumatology/keq096

  15. 15. El-Sheikh, A.A.K., van den Heuvel, J.J.M.W., Koenderink, J.B., Koenderink, J.B. and Russel, F.G.M. (2010) Effect of Hypouricaemic and Hyperuricaemic Drugs on the Renal Urate Ef-flux Transporter, Multidrug Resistance Protein 4. British Journal of Pharmacology, 155, 1066-1075. https://doi.org/10.1038/bjp.2008.343

  16. 16. Tanner, C., Boocock, J., Stahl, E.A., Dobbyn, A., Mandal, A.K., Cad-zow, M., et al. (2017) Population-Specific Resequencing Associates the ATP-Binding Cassette Subfamily C Member 4 Gene with Gout in New Zealand Maori and Pacific Men. Arthritis & Rheumatology, 69, 1461-1469. https://doi.org/10.1002/art.40110

  17. 17. 毛古燧, 黄传兵, 汪元, 付俊, 闫学朋. 尿酸转运蛋白在原发性痛风中的研究进展[J]. 安徽医药, 2017, 21(1): 7-10.

  18. 18. Bobulescu, I.A. and Moe, O.W. (2012) Renal Transport of Uric Acid: Evolving Concepts and Uncertainties. Advances in Chronic Kidney Disease, 19, 358-371. https://doi.org/10.1053/j.ackd.2012.07.009

  19. 19. Chiba, T., Matsuo, H., Kawamura, Y., Nagamori, S., Nishiyama, T., Wei, L., et al. (2015) NPT1/SLC17A1 Is a Renal Urate Exporter in Humans and Its Common Gain-of-Function Var-iant Decreases the Risk of Renal Underexcretion Gout. Arthritis & Rheumatology, 67, 281-287. https://doi.org/10.1002/art.38884

  20. 20. Jutabha, P., Anzai, N., Kimura, T., Taniguchi, A., Urano, W., Yamanaka, H., et al. (2010) Functional Analysis of Human Sodium-Phosphate Transporter 4 (NPT4/SLC17A3) Polymorphisms. Jour-nal of Pharmacological Sciences, 115, 249-253. https://doi.org/10.1254/jphs.10228SC

  21. 21. Yano, H., Tamura, Y., Kobayashi, K., Tanemoto, M. and Uchida, S. (2014) Uric Acid Transporter ABCG2 Is Increased in the Intestine of the 5/6 Nephrectomy Rat Model of Chronic kidney Disease. Clinical & Experimental Nephrology, 18, 50-55. https://doi.org/10.1007/s10157-013-0806-8

  22. NOTES

    *通讯作者。

期刊菜单