﻿ 微型机械蜻蜓的气动特性研究 Research on Aerodynamic Characteristics of Micro-Mechanical Dragonfly

Mechanical Engineering and Technology
Vol.05 No.02(2016), Article ID:17913,10 pages
10.12677/MET.2016.52018

Research on Aerodynamic Characteristics of Micro-Mechanical Dragonfly

Yuning Ren1, Kai Chen2, Yuxin Zhou1, Sijie Lei1, Jingjie Sha2

1Chien-Shiung Wu College, Southeast University, Nanjing Jiangsu

2School of Mechanical Engineering, Southeast University, Nanjing Jiangsu

Received: Jun. 9th, 2016; accepted: Jun. 27th, 2016; published: Jun. 30th, 2016

ABSTRACT

According to the dragonfly’s flight characteristics, we analyze the motion of the wings of the dragonfly, and apply the dragonfly wing’s motion equation to the study of the aerodynamic characteristics. The numerical simulation is based on the unsteady Navier-Stokes equations. We control the movement of the wings by writing a function combined with dynamic mesh and use the ANSYS Fluent to get results. We also study the effect of different flight speed and wing’s size. The results and conclusions will be applied to the design of the micro-mechanical dragonfly.

Keywords:Dragonfly, Flapping Aircraft, Motion Equation, Aerodynamic Characteristics, Numerical Simulation

1东南大学吴健雄学院，江苏 南京

2东南大学机械学院，江苏 南京

1. 引言

2. 实验方案介绍

2.1. 模型设计

Figure 1. Geometric design of wings

Figure 2. Two-dimensional flutter model

2.2. 网格系统

2.3. 数值方法

Figure 3. Sectional meshing of wings

3. 运动模型

3.1. 运动分析

3.2. 运动实现

4. 计算结果及分析

4.1. 运动实现

Figure 4. Trace of azimuth angle [9]

Figure 5. The document result [10]

Figure 6. This research’s result

4.2. 最大攻角150˚下的升力系数变化情况

4.3. 最大攻角90˚下的升力系数变化情况

4.4. 飞行速度对升力的影响

4.5. 单个翅膀升力值的变化情况

Figure 7. Lift coefficient curve with the maximum angle 150˚

Figure 8. Lift coefficient curve with the maximum angle 90˚

Figure 9. Lift coefficient curve under different flight velocities

Figure 10. Total lift curve on each wing

Table 1. The average force in each quarter circle

4.6. 傅里叶级数拟合结果

5. 总结

Figure 11. Lift coefficient curve on each wing under the Fourier series fit

1) 蜻蜓在一个扑动周期内，升力呈现的总体趋势是下降上升再下降上升，升力的最大值可能出现在一个扑动周期的开始或结束时期。

2) 翅膀做下扑动作时，升力系数由高到低变化，上扑动作时则相反。同时翅膀作下扑动作时的升力系数普遍大于作上扑动作时的升力系数。因此在实际的机械蜻蜓设计时，可尽量让一个周期内的下扑时间略大于上扑时间来获得较大的升力值。

3) 翅膀攻角对升力值的影响十分明显，自然界的蜻蜓在飞行过程中会有产生负升力系数的时刻，实际在设计机械蜻蜓运动时可以考虑避免这种情况。

4) 蜻蜓的飞行速度对升力影响非常显著，同时翅膀的设计尺寸对升力值的影响也较大，较宽的翅膀可能会产生更大的升力系数。在机械蜻蜓的制作中，可以根据本文的部分计算结果综合考虑样机重量、尺寸等参数的设计。

Research on Aerodynamic Characteristics of Micro-Mechanical Dragonfly[J]. 机械工程与技术, 2016, 05(02): 140-149. http://dx.doi.org/10.12677/MET.2016.52018

1. 1. 肖永利. 厘米级旋翼型微型飞行器研究与设计[D]: [博士学位论文]. 上海: 上海交通大学, 2001.

2. 2. 肖永利, 张琛. 微型飞行器的研究现状与关键技术[J]. 宇航学报, 2001, 22(5): 26-32.

3. 3. 苑伟政, 马炳和, 毛竹群. 基于MEMS的微型飞机(MAV)关键技术[J]. 航空精密制造技术, 2000, 36(3): 1-6.

4. 4. Wakeling, J. and Ellington, C. (1997) Dragonfly Flight. I. Gliding Flight and Steady-State Aerodynamic Forces. Journal of Experimental Biology, 200, 74-75.

5. 5. Gaissert, N., Mugrauer, R., Mugrauer, G., et al. (2014) Inventing a Micro Aerial Vehicle Inspired by the Mechanics of Dragonfly Flight. Springer, Berlin, Heidelberg.

6. 6. Thomas, A.L.R., Taylor, G.K., Srygley, R.B., et al. (2004) Dragonfly Flight: Free-Flight and Tethered Flow Visualizations Reveal a Diverse Array of Unsteady Lift-Generating Mechanisms, Controlled Primarily via Angle of Attack. Journal of Experimental Biology, 207, 4299-4323.

7. 7. Chen, Y.H., Skote, M., Zhao, Y., et al. (2013) Dragonfly (Sympetrum flaveolum) Flight: Kinematic Measurement and Modelling. Journal of Fluids & Structures, 40, 115-126. http://dx.doi.org/10.1016/j.jfluidstructs.2013.04.003

8. 8. 李越. 蜻蜓翅翼拍动机理研究和模拟装置研制[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2007.

9. 9. Azuma, A., Azuma, S., Watanabe, I. and Furuta, T. (1985) Flight Mechanic of a Dragonfly. Great Britain, 116, 79- 107.

10. 10. 刘聪. 仿生扑翼飞行器结构设计及其动力学仿真研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2010.