﻿ 基于农作物生长优选环境的方差分析模型 The ANOVA Based on Crop Growth Optimization Environment

Statistical and Application
Vol.04 No.04(2015), Article ID:16684,9 pages
10.12677/SA.2015.44033

The ANOVA Based on Crop Growth Optimization Environment

Jianjie Chen1, Weiyan Mu1, Huaji Zhu2

1Science of School, Beijing University of Civil Engineering and Architecture, Beijing

2Beijing Research Center for Information Technology in Agriculture, Beijing

Received: Dec. 10th, 2015; accepted: Dec. 27th, 2015; published: Dec. 30th, 2015

ABSTRACT

The application of the Internet of things in agriculture has made a series of crops problems in different growth periods be well controlled. However, the precise control, to some extent, is also the reflection of experience and feeling from technicists who take charge in the remote control technology. This article based on the choice of crops growth optimizing environment, monitoring date from the agriculture network and construction of model by statistical method of ANOVA, combines statistical method with agriculture problem in order to accurately and quantificationally discover the best sites for crop growth and ensure that crops have a suitable growth environment and eventually put this method into practice.

Keywords:Agricultural IOT, Monitoring Data, Optimization Environment, ANOVA, The Best Test Point

1北京建筑大学理学院，北京

2北京农业信息技术研究中心，北京

1. 引言

2. 试验设计

Table 1. Corn variable under different experimental conditions

3. 构建数学模型

3.1. 问题分析，确定观测变量和控制变量

3.2. 剖析观测变量的方差，确定离差分解式

3.3. 提出统计假设

3.4. 进行离差分析，将条件误差，交互作用，与随机误差进行比较，得方差分析表

Table 2. Data structure of double factor variance analysis in equilibrium state

Table 3. Test of the effect of the subject

aR方 = 0.842 (调整R方 = 0.807)

3.5. 统计决策

3.6. 关系强度的测量

4. 结果分析

4.1. 控制变量交互作用的图形分析

4.2. 均值检验

Figure 1. Interactive graphics analysis

Table 4. LSD multiple comparisons (variety)

Table 5. Variety deviation comparison

Figure 2. Box-plot (variety)

Table 6. LSD multiple comparisons (fertilizer)

Table 7. Fertilizer deviation contrast

Figure 3. Box-plot (fertilizer)

5. 方差分析假设的检验

6. 结论

Table 8. Levene test of equivalence property of error variancea

Table 9. Normal test

*这是真实显著水平的下限。aLilliefors显著水平修正

Table 10. Normal test

*这是真实显著水平的下限。aLilliefors显著水平修正

The ANOVA Based on Crop Growth Optimization Environment[J]. 统计学与应用, 2015, 04(04): 296-304. http://dx.doi.org/10.12677/SA.2015.44033

1. 1. 王春山, 李久熙, 黄仁录, 李丽华. 基于物联网的新型设计与实现[J]. 农机化研究, 2015(8): 81-87.

2. 2. 何晓群. 多元统计分析[M]. 第三版. 北京: 中国人民大学出版社, 2011: 12.

3. 3. 杨忠云. 基层单位如何做好农作物品种区域试验工作[J]. 种子世界, 2015(1): 12-14.

4. 4. 贾俊平, 何晓群, 金勇进. 统计学[M]. 第五版. 北京: 中国人民大学出版社, 2012: 6.

5. 5. 陈胜可. 统计分析从入门到精通[M]. 第二版. 北京: 清华大学出版社, 2013: 5.

6. 6. 薛薇. 统计分析与SPSS的应用[M]. 第四版. 北京: 中国人民大学出版社, 2014: 8.

7. 7. 澎秋连, 张跃彬, 杨华, 冯璐, 邓军, 樊仙. 地理信息系统在农业领域的应用探讨[J]. 农业网络信息, 2014(10): 32-35.

8. 8. 洪少朋, 骆浩文. 统计分析及其软件在农业中的应用[J]. 计算机与农业, 2003(5): 18-20.

9. 9. 何国民. 应用统计学案列教程[M]. 武汉: 华中科技大学出版社, 2013: 9.

10. 10. 蔺建霞. WSNs应用于农作物生长环境监测模型的研究[J]. 电脑开发与应用, 2014, 27(6): 25-31.

11. 11. 张润楚, 刘民千, 等, 译. 试验应用统计[M]. 原书第二版. 北京: 机械工业出版社, 2009: 10.