Journal of Sensor Technology and Application
Vol. 10  No. 02 ( 2022 ), Article ID: 50087 , 6 pages
10.12677/JSTA.2022.102020

单根光纤布拉格光栅横向受力自动判断研究

季春波,廖帮全*,高鹏,李宁伟,翟媛媛,付连宇

天津工业大学,物理科学与技术学院,天津

收稿日期:2022年3月11日;录用日期:2022年4月3日;发布日期:2022年4月11日

摘要

单根光纤布拉格光栅在一定的横向压力下中心波长处的光功率大小及中心波长会发生人眼能判断的变化。通过编写代码来读取光谱仪输出的数据,程序代码对输出的数据进行可视化并且和未受到横向压力时的光纤光栅光谱进行对比,在对受到横向压力光纤光栅的中心波长处的光功率和未受到横向压力光纤光栅中心波长处的光功率进行比较大小,可识别出受力光栅和光谱仪显示的受力的光栅结果一致,此结果与光栅已受力的实际情况相符。

关键词

光纤布拉格光栅,横向受力,自动判断

Study on Automatic Judgment of Transverse Force of Single FBG

Chunbo Ji, Bangquan Liao*, Peng Gao, Ningwei Li, Yuanyuan Zhai, Lianyu Fu

School of Physical Science and Technology, Tiangong University, Tianjin

Received: Mar. 11th, 2022; accepted: Apr. 3rd, 2022; published: Apr. 11th, 2022

ABSTRACT

Under certain lateral pressure, the optical power and central wavelength of a single fiber Bragg grating at the central wavelength will change as judged by the human eye. The output data of the spectrometer is read by writing code. The output data are visualized by the program code and compared with the spectrum of the fiber grating without transverse pressure. The optical power at the central wavelength of the fiber grating under transverse pressure and the optical power at the central wavelength of the fiber grating without transverse pressure are compared. The results of the stress grating and the grating displayed by the spectrometer are consistent, which is consistent with the actual situation of the grating.

Keywords:Fiber Bragg Grating, Transverse Force, Automatic Judgment

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

光纤布拉格光栅(FBG)传感器由于具有响应速度快、成本低、抗干扰、兼容性强、性能稳定等优点使它在通信领域和光学传感领域受到广泛的关注 [1] [2] [3]。基于这些优点使FBG在生活中得到大量的应用,如压力、位移、应变等参数的测量 [4] [5] [6] [7]。FBG在生活和工业中应用也十分广泛,如健康监测 [8]、测量流速 [9]、制作光纤激光器 [10]、检测和定位撞击位置 [11]、倾斜检测装置 [12] 等。目前对光纤光栅的应力和应变的研究,大多数文献报道都是光纤光栅轴向方向的研究 [13] [14]。由于光纤光栅横向应力使光纤光栅发生形变导致双折射 [15],但FBG的反射光谱变化不是十分明显,因而关于FBG横向应力传感的研究相对较少。有些科学家们发现可以使用FBG的偏振相关损耗(PDL)性质可以进行横向应力的测量 [16],因为偏振相关损耗对横向压力的具有很好灵敏度,所以光纤光栅这种横向应力的测量方法具有很高的研究价值。Descamps等研究了一种利用啁啾光纤光栅(CFBG)偏振相关损耗谱估计横向负载分布的方法 [17],该方法利用了啁啾光纤光栅偏振相关损耗的积分与力分布之间的关系,其优点是不需要任何迭代方法来估计横向载荷分布。Wang等提出了一种利用FBG偏振特性进行温度不敏感横向负载传感的新方法 [18],从理论和实验上研究了光纤光栅的偏振相关损耗随传输信号波长随横向载荷的变化规律。Li等提出并演示了一种新颖且简单的波长可切换多波长掺铒光纤(EDF)激光器 [19],其基于级联FBG作为波长梳状滤波器的偏振相关损耗调制。Su等研究了局域压力下FBG偏振相关损耗的光谱特性,并分析了二次峰的演化 [20],详细研究了负载大小、负载长度和负载位置对产生的二次峰的振幅和波长的影响,采用基于改进传递矩阵法的数值模拟方法计算了光纤光栅的传输和PDL响应。Wang等提出并实验验证了一种利用pi相移布拉格光栅(pi-FBG)偏振特性进行横向负载传感的新技术 [21],研究了pi-FBG偏振相关损耗的光谱特性,分析了pi-FBG的PDL响应随横向载荷的变化规律。Xu等对倾斜光纤布拉格光栅的偏振特性进行了理论研究并推导计算了不同倾角倾斜光纤布拉格光栅的波长相关偏振相关损耗表达式 [22]。Lu等讨论了光纤布拉格光栅的波长相关偏振相关损耗特性 [23]。我们希望在上述研究基础上,通过程序自动判断光栅是否受到横向压力。

2. 横向受力特性简析

FBG横向压力作用示意图如图1所示,光纤光栅横向受力方向为y,纵向方向为x,光纤光栅轴向为z。当光纤光栅y方向受到外部均匀压力时,光纤光栅发生形变导致x和y方向折射率都发生变化,从而产生双折射现象。由于光纤光栅中的双折射,将导致其透射光谱、反射光谱将对应发生变化。

3. 单FBG横向受力实验设置

单光纤光栅横向受力的实验系统图如图2所示,光由ASE发出,经过单根FBG后进入光谱分析仪。其中光谱分析仪最小分辨率为0.02 nm。本次实验使用的光源是ASE100,它的输出功率为13.5 dB,它产生波长的光源区间为1528 nm~1610 nm。

Figure 1. Diagram of FBG transverse pressure action

图1. FBG横向压力作用示意图

Figure 2. Single FBG transverse force experimental system diagram

图2. 单FBG横向受力实验系统图

进行实验时,将FBG平放在表面光滑平整的塑料板上,在光栅上面垂直于光栅放置两根小钢针,光栅上面的钢针通过木板上的重物来对光栅施加横向压力,另一根光栅位于光纤上,为木板提供平衡作用。在两根钢针上面放置一块平整的平板,在平板上在放置重物来实现给FBG施加横向压力,如图3所示。

Figure 3. FBG transverse force diagram

图3. FBG横向受力示意图

实验所使用的光纤光栅在室温的中心波长为1547.7800 nm。光栅的长度为10 mm,带宽是0.2 nm,受力位置在光栅中间处。

4. 单根FBG横向受力实验结果及受力自动判断

图3所示实验情况下,当重物为1 kg时,FBG透射谱在1547.78 nm处的透射光功率变化了4.6 dB。

我们编写代码来读取光谱仪输出的数据,并通过代码进行数据分析和可视化。代码识别光栅受力与否的流程图如图4所示。执行的代码使用python语言通过Jupyter Notebook编程来实现。阈值设定为2 dB,如果大于此值则判定光栅受力,小于此值则判定光栅未受力。通过比较与阈值的相对大小实现判断光栅是否受力。

Figure 4. Code identification flowchart

图4. 代码识别流程图

程序运行结果表明,当给光栅施加上实验中的压力时程序判定FBG受到横向压力。这与光谱仪上光谱变化情况相符,也与我们实际实验施加压力过程相符。

5. 结论

我们搭建了一种FBG横向受力的实验装置及自动判断FBG是否受力的系统,通过程序自动判断光栅是否受到横向压力,它具有一定的工程价值。单根光栅未受到横向压力时光谱仪显示的是一段光滑的曲线,当光栅受到横向压力时,光栅中心波长处的透射光谱会发生明显的变化,通过对比光栅受力前后中心波长处的光功率变化来判断光栅是否受到横向压力。运行程序结果表明,程序自动判断光栅受到横向压力的结果与光谱仪上的光谱变化一致,也与实际上光栅是否受力情况一致。这表明我们的方法具有一定可行性。

文章引用

季春波,廖帮全,高 鹏,李宁伟,翟媛媛,付连宇. 单根光纤布拉格光栅横向受力自动判断研究
Study on Automatic Judgment of Transverse Force of Single FBG[J]. 传感器技术与应用, 2022, 10(02): 163-168. https://doi.org/10.12677/JSTA.2022.102020

参考文献

  1. 1. Massaroni, C., Zaltieri, M., Lo Presti, D., Nicolò, A., Tosi, D. and Schena, E. (2021) Fiber Bragg Grating Sensors for Cardiorespiratory Monitoring: A Review. IEEE Sensors Journal, 21, 14069-14080. https://doi.org/10.1109/JSEN.2020.2988692

  2. 2. Floris, I., Adam, J.M., Calderon, P.A. and Sales, S. (2021) Fi-ber Optic Shape Sensors: A Comprehensive Review. Optics and Lasers in Engineering, 139, Article ID: 106508. https://doi.org/10.1016/j.optlaseng.2020.106508

  3. 3. Burgmeier, J., Koch, J. and Schade, W. (2012) Intensi-ty-Independent Fiber Coupled Interrogation Technique for Fiber Bragg Gratings by Fiber Bragg Gratings. 22nd Interna-tional Conference on Optical Fiber Sensors, Proceedings of SPIE Vol. 8421, Beijing, 15-19 October 2012, Article ID: 84215G. https://doi.org/10.1117/12.975306

  4. 4. Leal, A.G., Theodosiou, A., Min, R., Casas, J., Díaz, C.R., Dos Santos, W.M., José Pontes, M., et al. (2019) Quasi-Distributed Torque and Displacement Sensing on a Series Elastic Actuator’s Spring Using FBG Arrays Inscribed in CYTOP Fibers. IEEE Sensors Journal, 19, 4054-4061. https://doi.org/10.1109/JSEN.2019.2898722

  5. 5. Li, T.L., Shi, C.Y. and Ren, H.L. (2018) Three-Dimensional Catheter Distal Force Sensing for Cardiac Ablation Based on Fiber Bragg Grating. IEEE-ASME Transactions on Mecha-tronics, 23, 2316-2327. https://doi.org/10.1109/TMECH.2018.2867472

  6. 6. Singh, A.K., Zhu, Y.P., Han, M. and Huang, H.Y. (2017) Embedded Fiber Bragg Grating Sensor in Composite for Bandwidth Modulation. Sensors and Smart Structures Tech-nologies for Civil, Mechanical, and Aerospace Systems 2017, Proceedings of SPIE, Vol. 10168, Portland, 26-29 March 2017, Article ID: 101681U. https://doi.org/10.1117/12.2260401

  7. 7. Li, T.L. and Ren, H.L. (2017) A Hybrid FBG Displacement and Force Sensor with a Suspended and Bent Optical Fiber Configuration. Sensors and Actuators A: Physical, 268, 117-125. https://doi.org/10.1016/j.sna.2017.11.032

  8. 8. Wee, J., Alexander, K. and Peters, K. (2021) Self-Referencing Ul-trasound Detection of Fiber Bragg Grating Sensor with Two Adhesive Bonds. Measurement Science and Technology, 32, Article ID: 105115. https://doi.org/10.1088/1361-6501/ac065c

  9. 9. Zhang, T.X., Guo, T., Wang, R.H. and Qiao, X.G. (2021) A Hot-Wire Flowmeter Based on Fiber Extrinsic Fabry—Pérot Interferometer with Assistance of Fiber Bragg Grating. Op-tics Communications, 497, Article ID: 126952. https://doi.org/10.1016/j.optcom.2021.126952

  10. 10. Su, Y., Zhao, T.G., Wang, X. and Liu, S.X. (2021) Design of Feedback Wavelength Demodulation and Compensation System for FBG-Tuned CW Fiber Laser. Sensors and Actuators A: Physical, 330, Article ID: 112881. https://doi.org/10.1016/j.sna.2021.112881

  11. 11. Fu, T.L., Ting, C., Jian, L. and Huang, X.J. (2021) Broadband Elastic Wave Detection Based on Dual FBGs Capable of Automatically Matching the Spectra. Measurement Science and Technology, 32, Article ID: 115119. https://doi.org/10.1088/1361-6501/ac0bde

  12. 12. Ismail, N.N., Sharbirin, A.S., Sa’ad, M.S.M., Zaini, M.K.A., Is-mail, M.F., Brambilla, G., et al. (2021) Novel 3D-Printed Biaxial Tilt Sensor Based on Fiber Bragg Grating Sensing Ap-proach. Sensors and Actuators A: Physical, 330, Article ID: 112864. https://doi.org/10.1016/j.sna.2021.112864

  13. 13. Hopf, B., Fischer, B., Bosselmann, T., Koch, A.W. and Roths, J. (2019) Strain-Independent Temperature Measurements with Surface-Glued Polarization-Maintaining Fiber Bragg Grating Sensor Elements. Sensors, 19, Article No. 114. https://doi.org/10.3390/s19010144

  14. 14. Gubaidullin, R.R., Sa-habutdinov, A.Z., Agliullin, T.A., Morozov, O.G. and Ivanov, V. (2019) Application of Addressed Fiber Bragg Struc-tures for Measuring Tire Deformation. 2019 Systems of Signal Synchronization, Generating and Processing in Tele-communications, Russia, 1-3 July 2019, 1-7. https://doi.org/10.1109/SYNCHROINFO.2019.8813908

  15. 15. Fazzi, L., Rajabzadeh, A., Milazzo, A. and Groves, R.M. (2019) Analysis of FBG Reflection Spectra under Uniform and Non-Uniform Transverse Loads. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, Proceedings of SPIE Vol. 10970, Denver, 4-7 March 2019, Article ID: 109701X. https://doi.org/10.1117/12.2513795

  16. 16. Caucheteur, C., Bette, S., Garcia-Olcina, R., Wuilpart, M., Sales, S., Capmany, J., et al. (2007) Transverse Strain Measurements Using the Birefringence Effect in Fiber Bragg Gratings. IEEE Photonics Technology Letters, 19, 966-968. https://doi.org/10.1109/LPT.2007.897566

  17. 17. Descamps, F., Bette, S., Kinet, D. and Caucheteur, C. (2016) Direct Transverse Load Profile Determination Using the Polarization-Dependent Loss Spectral Response of a Chirped Fiber Bragg Grating. Applied Optics, 55, 4270-4276. https://doi.org/10.1364/AO.55.004270

  18. 18. Wang, Y.P., Huang, X.Q. and Wang, Y. (2011) Tempera-ture-Insensitive Transverse Load Sensing with Improved Accuracy Using Stress Induced Birefringence Effects of Fiber Bragg Grating. Optik, 122, 1914-1917. https://doi.org/10.1109/JLT.2020.3026693

  19. 19. Li, Y., Shen, Y., Tian, J.J., Fu, Q. and Yao, Y. (2021) Wave-length Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on Polarization-Dependent Loss Modulation. Journal of Lightwave Technology, 39, 243-250. https://doi.org/10.1109/JLT.2020.3026693

  20. 20. Su, Y., Zhu, Y., Zhang, B., Zhou, H., Li, J. and Wang, F. (2015) Spectral Characterization of Polarization Dependent Loss in Fiber Bragg Grating under Local Pressure and the Analysis of Secondary Peak. Optical Fiber Technology, 24, 77-83. https://doi.org/10.1016/j.yofte.2015.05.005

  21. 21. Wang, Y.P., Li, N., Huang, X.Q. and Wang, M. (2015) Fiber Optic Transverse Load Sensor Based on Polarization Properties of Pi-Phase-Shifted Fiber Bragg Grating. Optics Communications, 342, 152-156. https://doi.org/10.1016/j.optcom.2014.12.053

  22. 22. Xu, O., Lu, S.H. and Jian, S.S. (2010) Theoretical Analysis of Polarization Properties for Tilted Fiber Bragg Gratings. Science China Information Sciences, 53, 390-397. https://doi.org/10.1007/s11432-010-0017-9

  23. 23. Lu, P. and Chen, Q.Y. (2007) Polarization Dependent Loss of Fiber Bragg Gratings and Sensing Applications. Photonics North 2007, Proceedings of SPIE, Vol. 6796, Ottawa, 4-7 June 2007, Article ID: 679624. https://doi.org/10.1117/12.778901

  24. NOTES

    *通讯作者。

期刊菜单