Advances in Clinical Medicine
Vol. 12  No. 07 ( 2022 ), Article ID: 53862 , 6 pages
10.12677/ACM.2022.127975

施万细胞在皮肤疾病中的研究进展

郝蕙榕1,柏冰雪2*

1哈尔滨医科大学附属第二医院,黑龙江 哈尔滨

2哈尔滨医科大学附属第二医院皮肤科,黑龙江 哈尔滨

收稿日期:2022年6月19日;录用日期:2022年7月11日;发布日期:2022年7月21日

摘要

施万细胞(Schwann cells, SCs)长期以来被认为具有支持、修复和促进周围神经系统损伤后轴突再生的能力。在对神经损伤的反应中,它们迅速去分化成前体样状态,分泌一系列炎症介质和生长因子、增殖、经历上皮–间充质样转化以促进迁移、吞噬细胞碎片,并重塑细胞外环境以促进轴突通过损伤部位的再生。尽管施万细胞(Schwann cells, SCs)的皮肤作用越来越被认识,在本文中我们认为施万细胞(Schwann cells, SCs)在皮肤感觉和神经修复之外的皮肤生理学和病理学中,其可能的复杂功能值得更多的关注和系统研究。例如,促进/加速黑色素瘤的生长和侵袭、施万细胞(Schwann cells, SCs)促进伤口愈合、支持神经纤维瘤/神经鞘瘤的生长等。

关键词

施万细胞,皮肤疾病,沃乐退化,皮肤愈合,黑素细胞瘤

Research Progress of Schwann Cells in Skin Diseases

Huirong Hao1, Bingxue Bai2*

1The Second Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang

2Department of Dermatovenereology, Second Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang

Received: Jun. 19th, 2022; accepted: Jul. 11th, 2022; published: Jul. 21st, 2022

ABSTRACT

Schwann cells (SCs) have long been considered to have the ability to support, repair and promote axonal regeneration after peripheral nervous system injury. In response to nerve injury, they rapidly dedifferentiate into precursor-like states, secrete a series of inflammatory mediators and growth factors, proliferate and undergo epithelial-mesenchymal transformation to promote migration and phagocytosis of cell fragments, and reshape the extracellular environment to promote axon regeneration through the injured site. Although the skin function of SCs is more and more recognized, in this paper, we believe that the possible complex functions of SCs deserve more attention and systematic study in skin physiology and pathology besides skin sensory and nerve repair. For example, it promotes or accelerates the growth and invasion of melanoma, SCs promotes wound healing, and supports the growth of neurofibroma or schwannoma.

Keywords:Schwann Cell, Skin Diseases, Wallerian Degradation, Skin Healing, Melanoma

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在人类皮肤的结构中有一个复杂的神经丛,感觉传入神经传递轻触、振动、疼痛、瘙痒、热和冷的感觉,自主传出神经支配汗腺和竖毛肌。这些神经元还可以通过向非神经细胞传递信号,来调节皮肤生理和疾病病理 [1] [2]。传统的研究工作主要集中在神经元上,而相关的神经胶质细胞却被大大忽视。施万细胞(Schwann cells, SCs)——外周神经系统(PNS)的胶质细胞,因其支持受损轴突再生的能力而受到特别关注 [3]。然而,最近的研究揭示了施万细胞(Schwann cells, SCs)在非神经生物学中的重要作用:维持肠道内环境稳定 [4],维持干细胞生长 [5],免疫调节 [6] [7],促进皮肤伤口愈合 [8] [9] [10] [11] 和促进癌症进展 [7] [12]。考虑到它们在真皮–表皮连接处的丰富和分布,施万细胞在肿瘤及炎症性皮肤病中的作用的问题已经提出 [13]。

2. 施万细胞(Schwann Cells, SCs)

2.1. 施万细胞(Schwann Cells, SCs)的生理功能

成熟的施万细胞(Schwann cells, SCs)为轴突提供代谢支持,并通过髓鞘形成增加传导速度。施万细胞还支持修复和促进周围神经系统损伤后的轴突再生。神经纤维的损伤会产生与神经元细胞体不再连续的远端碎片。这个末端片段经历了一系列复杂的过程,被生物体降解和清除,整个过程被称为沃乐退化(Wallerian退化)。施万细胞(Schwann cells, SCs)通过启动一系列细胞变化做出反应,包括去分化、细胞因子/趋化因子和生长因子的分泌、细胞碎片的吞噬作用和细胞外重塑,以支持轴突生长到受损组织中。神经免疫单位被认为是组织生理学和对环境信号反应的关键调节者,尽管只有少数研究调查了胶质细胞的贡献 [4]。胃肠道的SC细胞样胶质细胞调节胃肠运动和肠道屏障功能,并可通过模式识别受体感知环境。此外,肠胶质细胞的一个新兴作用已经被提出用于克罗恩病 [4]。

2.2. 施万细胞(Schwann Cells, SCs)在人体皮肤中的起源和分布

施万细胞(Schwann cells, SCs)来源于神经嵴。神经嵴细胞产生多种细胞线,包括周围和肠道神经系统的神经成分、施万细胞前体(Schwann cell precursors, SCPs)和黑素细胞的子集。施万细胞(Schwann cells, SCs)随着发育中的神经纤维迁移,分化为未成熟的施万细胞(Schwann cells, SCs)、黑素细胞和神经内成纤维细胞 [14]。未成熟的施万细胞(Schwann cells, SCs)将成为有髓施万细胞(Myelinated Schwann cell, mSCs)、无髓施万细胞(Unmyelinated Schwann cell, nmSCs)、神经–肌肉连接处的终末胶质细胞、自主神经节和PNS神经节周围的卫星胶质细胞 [3]。施万细胞(Schwann cells, SCs)构成人类真皮内的主要细胞群,密度范围为180/mm2至450/mm2,具体数值取决于采样的身体部位 [13]。作为比较,黑素细胞的平均密度为950/mm2 [15]。表皮下神经丛中的大多数神经纤维没有髓鞘 [13]。尽管没有髓鞘,但这些神经纤维与施万细胞(Schwann cells, SCs)密切相关:无髓鞘SCs (nmSCs)包裹着多个轴突,但它们不形成致密的髓鞘 [16]。无髓施万细胞用它们的质膜包裹每个轴突,这样相邻的轴突就被分开了 [16]。当神经纤维进入表皮时,它们失去了施万细胞鞘和与角质细胞相关联的游离神经末梢,在角质细胞中,它们可以对真实的组织损伤或具有威胁的组织损伤做出反应 [17],或者与Merkel cells一起检测机械刺激 [18]。

3. 施万细胞(Schwann Cells, SCs)与黑素细胞瘤

施万细胞(Schwann cells, SCs)是周围神经修复的关键调节剂,最近已显示出可直接影响非神经伤口愈合。然而,它们在癌症进展中的作用主要限于神经性疼痛和神经周维浸润。相关研究表明黑色素瘤激活了施万细胞(Schwann cells, SCs)的休眠功能,该功能针对神经再生和伤口愈合。神经元的破坏和移位过程中,施万细胞(Schwann cells, SCs)重新编程为修复施万细胞(Repair Schwann cells, rSC),并通过黑色素瘤细胞到施万细胞(Schwann cells, SCs)的直接信号传递,导致神经损伤反应的激活。黑色素瘤激活的施万细胞(Schwann cells, SCs)通过调节免疫系统和细胞外基质,以促进体内和体外黑色素瘤生长的方式,显著改变了微环境,从而促进了体内和体外黑色素瘤的生长。 [12] [19]。在黑色素瘤原位模型中,皮肤感觉神经横切后,施万细胞(Schwann cells, SCs)活性的局部抑制作用显着降低了肿瘤的生长速度。

周围神经系统(PNS)最近已成为肿瘤微环境的重要组成部分,并与多种类型实体瘤的发展有关,包括前列腺癌、胃癌和基底细胞癌 [19] [20];运动、感觉和自主神经分支的PNS的复杂性,广泛解释了PNS如何增强癌症发展或进展有。已经确定,PNS的固有再生能力 [21] 是黑色素瘤生长的重要因素。人黑色素瘤神经支配的研究显示,与肿瘤附近的正常皮肤或组织相比,肿瘤内神经纤维和施万细胞(Schwann cells, SCs)显著减少。这一发现与前列腺癌、胃癌和胰腺癌的报告形成对比,在这些癌症中,肿瘤内的神经支配似乎对肿瘤的生长和进展很重要 [20] [21] [22]。得出结论,与其他实体癌不同,黑色素瘤侵入真皮可能会破坏或取代神经 [23] [24] [25]。并且我们检测到的大多数肿瘤内神经细胞或施万细胞标记物都被黑色素瘤细胞强烈表达 [26] [27] [28]。因此,在黑色素瘤引起的神经损伤和肿瘤周围的神经不断试图自我修复之间,似乎存在一种稳定状态。这种在肿瘤微环境中不断进行神经修复的模型,即将肿瘤比作无法愈合的伤口 [29]。研究表明,黑色素瘤转分化施万细胞(Schwann cells, SCs)在功能上类似于沃勒变性相关的修复施万细胞(Repair Schwann cells, rSC):它们显示出增强的运动性、细胞外基质重组、巨噬细胞吸引和组织修复极化M2型 [9] [23] [30] [31]。以上研究结果支持一种新的模式,即黑色素瘤细胞对施万细胞(Schwann cells, SCs)进行重新编程,从而在周围组织中引发神经损伤反应。但黑色素瘤细胞如何重新编程施万细胞(Schwann cells, SCs)尚不清楚。

由于没有发现施万细胞(Schwann cells, SCs)对黑色素瘤细胞增殖的直接影响,得出结论,在所有测试的黑色素瘤模型中观察到的体内肿瘤生长加速是由于活化的施万细胞(Schwann cells, SCs)对局部微环境的调节 [12]。这种解释与修复施万细胞(Repair Schwann cells, rSC)对周围组织已经确立的和正在出现的影响是一致的 [9] [23] [30] [32] [33]。有研究证明了黑色素瘤细胞可能直接触发修复施万细胞(Repair Schwann cells, rSC)活性,并可能促进肿瘤的生长和进展。可能有几种促进肿瘤的修复施万细胞(Repair Schwann cells, rSC)活动并行工作,包括局部免疫抑制和细胞外基质分解。研究表明,施万细胞(Schwann cells, SCs)是癌症侵袭的重要促进因子,并具有细胞在微环境中促进癌细胞扩散的独特行为特征。肿瘤微环境中的神经元修复过程可能是癌症进展的重要因素。

4. 施万细胞与皮肤伤口愈合

去分化施万细胞(Dedifferentiated Schwann cells, DSCs)协调皮肤修复。去分化施万细胞(Dedifferentiated Schwann cells, DSCs)具有再生能力的组织多样性,已经证明了它们在皮肤伤口愈合中活动的作用。在哺乳动物的皮肤中,有明显的表皮层、真皮层和皮下层。因此,皮肤具有强大的修复和再生能力 [34] [35]。成功皮肤修复的一个重要步骤是真皮成纤维细胞数量的充分扩大,这不仅可以重建真皮间室,而且还可以作为信号分子的来源,促进损伤皮肤的最佳再上皮化 [8]。

施万细胞(Schwann cells, SC)一直被认为是神经胶质细胞。然而最新研究表明,在特定条件下,施万细胞(Schwann cells, SCs)也可能像干细胞一样形成其他细胞群。施万细胞(Schwann cells, SC)具有分化成黑素细胞 [36]、嗜铬细胞 [9]、成牙本质细胞 [37]、神经内膜成纤维细胞 [38]、副交感神经细胞 [39] [40] 和肠道神经元的能力。由于这种多能性,施万细胞(Schwann cells, SCs)可能成为组织修复和再生医学的潜在目标。干细胞继续沉默、自我更新或分化的决定取决于这些细胞与周围细胞中的其他细胞的相互作用。多种类型的细胞已被确定为皮肤干细胞潜在的生态位支持细胞。然而,在皮肤愈合过程中,皮肤干细胞的组成是如何受到影响的仍然知之甚少。施万细胞(Schwann cells, SCs)是否也能维持真皮干细胞仍然未知。皮肤涉及到一个复杂的微环境,除了施万细胞(Schwann cells, SCs),还有其他几种基质细胞,免疫细胞,神经支配 [41] [42] 和细胞外基质蛋白,这种复杂的细胞组合合作执行皮肤功能的必要作用,不同细胞成分之间的相互作用将定义不同病理生理情况下的皮肤结果。因此,参与皮肤愈合的施万细胞(Schwann cells, SCs)和其他皮肤微环境细胞之间的交互作用仍有待研究。例如,未来的研究需要评估施万细胞(Schwann cells, SCs)与免疫细胞的相互作用在皮肤愈合中的重要性。对伤口愈合中涉及的细胞和分子过程的进一步了解,将会对我们理解皮肤内稳态和疾病具有重要意义。

施万细胞(Schwann cells, SCs)是异质性的,它们被细分为亚种群。Parfejevs等人在他们的研究中认为施万细胞是一个同质细胞群。施万细胞排列在神经突出物上,保护它们并促进它们的生存 [9]。皮肤是一个神经支配丰富的器官,有各种各样的神经纤维,包括感觉和自主神经轴突,影响着多种生理和病理生理皮肤功能,支持不同类型神经纤维的施万细胞在皮肤愈合过程中是否也表现出不同的行为仍有待研究。全世界有数百万人遭受着无法愈合的创伤各种疾病的特征是皮肤愈合不良,包括皮肤萎缩、畸形、神经病变、贫血、微血管疾病、局部因素或治疗中使用药物的毒性作用。Parfejevs等人证明了施万细胞(Schwann cells, SCs)的激活可以促进皮肤创面愈合。结果提示施万细胞(Schwann cells, SCs)移植可改善创面愈合。本研究揭示了施万细胞(Schwann cells, SCs)在皮肤中的一个新的重要作用 [9]。然而,我们对皮肤施万细胞(Schwann cells, SCs)生物学的了解仍然有限,未来的研究应该阐明伤口愈合过程中不同皮肤微环境细胞成分的复杂性和相互作用。人类施万细胞(Schwann cells, SCs)如何促进不同阶段的皮肤伤口愈合仍有待确定。

5. 结语

表皮下存在密集的细胞群,这些细胞群具有快速去分化、增殖、迁移、分泌炎症和营养介质以及响应感知的轴突损伤而改变细胞外环境的能力。我们现在知道施万细胞(Schwann cells, SCs)在一些皮肤病中起作用,但更深一步的作用机制仍有待探寻。施万细胞(Schwann cells, SCs)在人类皮肤生理学和病理学中有着巨大的潜力。

文章引用

郝蕙榕,柏冰雪. 施万细胞在皮肤疾病中的研究进展
Research Progress of Schwann Cells in Skin Diseases[J]. 临床医学进展, 2022, 12(07): 6759-6764. https://doi.org/10.12677/ACM.2022.127975

参考文献

  1. 1. Roosterman, D., Goerge, T., Schneider, S.W., et al. (2006) Neuronal Control of Skin Function: The Skin as a Neuroim-munoendocrine Organ. Physiological Reviews, 86, 1309-1379. https://doi.org/10.1152/physrev.00026.2005

  2. 2. Choi, J.E. and Di Nardo, A. (2018) Skin Neurogenic Inflamma-tion. Seminars in Immunopathology, 40, 249-259. https://doi.org/10.1007/s00281-018-0675-z

  3. 3. Jessen, K.R., Mirsky, R. and Lloyd, A.C. (2015) Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harbor Perspectives in Biology, 7, a020487. https://doi.org/10.1101/cshperspect.a020487

  4. 4. Godinho-Silva, C., Cardoso, F. and Veiga-Fernandes, H. (2019) Neuro-Immune Cell Units: A New Paradigm in Physiology. Annual Review of Immunology, 37, 19-46. https://doi.org/10.1146/annurev-immunol-042718-041812

  5. 5. Yamazaki, S., Ema, H., Karlsson, G., et al. (2011) Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche. Cell, 147, 1146-1158. https://doi.org/10.1016/j.cell.2011.09.053

  6. 6. Ydens, E., Lornet, G., Smits, V., et al. (2013) The Neuroinflammatory Role of Schwann Cells in Disease. Neurobiology of Disease, 55, 95-103. https://doi.org/10.1016/j.nbd.2013.03.005

  7. 7. Martyn, G.V., Shurin, G.V., Keskinov, A.A., et al. (2019) Schwann Cells Shape the Neuro-Immune Environs and Control Cancer Progression. Cancer Immunology, Immunother-apy, 68, 1819-1829. https://doi.org/10.1007/s00262-018-02296-3

  8. 8. Carr, M.J. and Johnston, A.P. (2017) Schwann Cells as Drivers of Tissue Repair and Regeneration. Current Opinion in Neurobiology, 47, 52-57. https://doi.org/10.1016/j.conb.2017.09.003

  9. 9. Parfejevs, V., Debbache, J., Shakhova, O., et al. (2018) Inju-ry-Activated Glial Cells Promote Wound Healing of the Adult Skin in Mice. Nature Communications, 9, Article No. 236. https://doi.org/10.1038/s41467-017-01488-2

  10. 10. Silva, W.N., Leonel, C., Prazeres, P.H.D.M., et al. (2018) Role of Schwann Cells in Cutaneous Wound Healing. Wound Repair and Regeneration, 26, 392-397. https://doi.org/10.1111/wrr.12647

  11. 11. Lebonvallet, N., Laverdet, B., Misery, L., et al. (2018) New Insights into the Roles of Myofibroblasts and Innervation during Skin Healing and Innovative Therapies to Improve Scar Innervation. Experimental Dermatology, 27, 950-958. https://doi.org/10.1111/exd.13681

  12. 12. Shurin, G.V., Kruglov, O., Ding, F., et al. (2019) Melanoma-Induced Re-programming of Schwann Cell Signaling Aids Tumor Growth. Cancer Research, 79, 2736-2747. https://doi.org/10.1158/0008-5472.CAN-18-3872

  13. 13. Reinisch, C.M. and Tschachler, E. (2012) The Dimensions and Characteristics of the Subepidermal Nerve Plexus in Human Skin—Terminal Schwann Cells Constitute a Substantial Cell Population within the Superficial Dermis. Journal of Dermatological Science, 65, 162-169. https://doi.org/10.1016/j.jdermsci.2011.10.009

  14. 14. Petersen, J. and Adameyko, I. (2017) Nerve-Associated Neu-ral Crest: Peripheral Glial Cells Generate Multiple Fates in the Body. Current Opinion in Genetics & Development, 45, 10-14. https://doi.org/10.1016/j.gde.2017.02.006

  15. 15. Xu, H., Fonseca, M., Wolner, Z., et al. (2017) Reference Values for Skin Microanatomy: A Systematic Review and Meta-Analysis of ex Vivo Studies. Journal of the American Academy of Dermatology, 77, 1133-1144.E4. https://doi.org/10.1016/j.jaad.2017.06.009

  16. 16. Harty, B.L. and Monk, K.R. (2017) Unwrapping the Unappreciat-ed: Recent Progress in Remak Schwann Cell Biology. Current Opinion in Neurobiology, 47, 131-137. https://doi.org/10.1016/j.conb.2017.10.003

  17. 17. Talagas, M., Lebonvallet, N., Berthod, F. and Misery, L. (2019) Cutaneous Nociception: Role of Keratinocytes. Experimental Dermatology, 28, 1466-1469. https://doi.org/10.1111/exd.13975

  18. 18. Abraira, V.E. and Ginty, D.D. (2013) The Sensory Neurons of Touch. Neuron, 79, 618-639. https://doi.org/10.1016/j.neuron.2013.07.051

  19. 19. Peterson, S.C., Eberl, M., Vagnozzi, A.N., et al. (2015) Basal Cell Carcinoma Preferentially Arises from Stem Cells within Hair Follicle and Mechanosensory Niches. Cell Stem Cell, 16, 400-412. https://doi.org/10.1016/j.stem.2015.02.006

  20. 20. Magnon, C., Hall, S.J., Lin, J., et al. (2013) Autonomic Nerve Development Contributes to Prostate Cancer Progression. Science, 341, Article ID: 1236361. https://doi.org/10.1126/science.1236361

  21. 21. Zhao, C.M., Hayakawa, Y., Kodama, Y., et al. (2014) Denervation Suppresses Gastric Tumorigenesis. Science Translational Medicine, 6, 250ra115. https://www.doi.org/10.1126/scitranslmed.3009569

  22. 22. Saloman, J.L., Albers, K.M., Li, D., et al. (2016) Ab-lation of Sensory Neurons in a Genetic Model of Pancreatic Ductal Adenocarcinoma Slows Initiation and Progression of Cancer. Proceedings of the National Academy of Sciences of the United States of America, 113, 3078-3083. https://doi.org/10.1073/pnas.1512603113

  23. 23. Jessen, K.R. and Mirsky, R. (2016) The Repair Schwann Cell and Its Function in Regenerating Nerves. The Journal of Physiology, 594, 3521-3531. https://doi.org/10.1113/JP270874

  24. 24. Glenn, T.D. and Talbot, W.S. (2013) Signals Regulating Myelination in Pe-ripheral Nerves and the Schwann Cell Response to Injury. Current Opinion in Neurobiology, 23, 1041-1048. https://doi.org/10.1016/j.conb.2013.06.010

  25. 25. Boerboom, A., Dion, V., Chariot, A. and Franzen, R. (2017) Mo-lecular Mechanisms Involved in Schwann Cell Plasticity. Frontiers in Molecular Neuroscience, 10, Article No. 38. https://doi.org/10.3389/fnmol.2017.00038

  26. 26. Uhlen, M., Fagerberg, L., Hallström, B.M., et al. (2015) Prote-omics. Tissue-Based Map of the Human Proteome. Science, 347, Article ID: 1260419. https://doi.org/10.1126/science.1260419

  27. 27. Slutsky, S.G., Kamaraju, A.K., Levy, A.M., et al. (2003) Activation of Myelin Genes during Transdifferentiation from Melanoma to Glial Cell Phenotype. Journal of Biological Chemistry, 278, 8960-8968. https://doi.org/10.1074/jbc.M210569200

  28. 28. Luo, C., Pietruska, J.R., Sheng, J., et al. (2015) Expression of On-cogenic BRAFV600E in Melanocytes Induces Schwannian Differentiation in Vivo. Pigment Cell & Melanoma Research, 28, 603-606. https://doi.org/10.1111/pcmr.12384

  29. 29. Dvorak, H.F. (2015) Tumors: Wounds that Do Not Heal-Redux. Cancer Immunology Research, 3, 1-11. https://doi.org/10.1158/2326-6066.CIR-14-0209

  30. 30. Clements, M.P., Byrne, E., Guerrero, L.F.C., et al. (2017) The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-Like Cells to Drive Peripheral Nerve Regeneration. Neuron, 96, 98-114.E7. https://doi.org/10.1016/j.neuron.2017.09.008

  31. 31. Stratton, J.A. and Shah, P.T. (2016) Macrophage Polarization in Nerve Injury: Do Schwann Cells Play a Role? Neural Regeneration Research, 11, 53-57. https://doi.org/10.4103/1673-5374.175042

  32. 32. Bunimovich, Y.L., Keskinov, A.A., Shurin, G.V. and Shurin, M.R. (2017) Schwann Cells: A New Player in the Tumor Microenvironment. Cancer Immunology, Immunotherapy, 66, 959-968. https://doi.org/10.1007/s00262-016-1929-z

  33. 33. Deborde, S. and Wong, R.J. (2017) How Schwann Cells Facilitate Cancer Progression in Nerves. Cellular and Molecular Life Sciences, 74, 4405-4420. https://doi.org/10.1007/s00018-017-2578-x

  34. 34. Alcolea, M.P. and Jones, P.H. (2014) Lineage Analysis of Epi-dermal Stem Cells. Cold Spring Harbor Perspectives in Medicine, 4, a015206. https://doi.org/10.1101/cshperspect.a015206

  35. 35. Leavitt, T., Hu, M.S., Marshall, C.D., et al. (2016) Scarless Wound Healing: Finding the Right Cells and Signals. Cell and Tissue Research, 365, 483-493. https://doi.org/10.1007/s00441-016-2424-8

  36. 36. Adameyko, I., Lallemend, F., Aquino, J.B., et al. (2009) Schwann Cell Precursors from Nerve Innervation Are a Cellular Origin of Melanocytes in Skin. Cell, 139, 366-379. https://doi.org/10.1016/j.cell.2009.07.049

  37. 37. Kaukua, N., Shahidi, M.K., Konstantinidou, C., et al. (2014) Glial Origin of Mesenchymal Stem Cells in a Tooth Model System. Nature, 513, 551-554. https://doi.org/10.1038/nature13536

  38. 38. Joseph, N.M., Mukouyama, Y.S., Mosher, J.T., et al. (2004) Neural Crest Stem Cells Undergo Multilineage Differentiation in Developing Peripheral Nerves to Generate Endoneurial Fibro-blasts in Addition to Schwann Cells. Development, 131, 5599-5612. https://doi.org/10.1242/dev.01429

  39. 39. Dya-chuk, V., Furlan, A., Shahidi, M.K., et al. (2014) Neurodevelopment. Parasympathetic Neurons Originate from Nerve-Associated Peripheral Glial Progenitors. Science, 345, 82-87. https://doi.org/10.1126/science.1253281

  40. 40. Espinosa-Medina, I., Outin, E., Picard, C.A., et al. (2014) Neurode-velopment. Parasympathetic Ganglia Derive from Schwann Cell Precursors. Science, 345, 87-90. https://doi.org/10.1126/science.1253286

  41. 41. Lousado, L., Prazeres, P.H.D.M., Andreotti, J.P., et al. (2017) Schwann Cell Precursors as a Source for Adrenal Gland Chromaffin Cells. Cell Death & Disease, 8, e3072. https://doi.org/10.1038/cddis.2017.456

  42. 42. Andreotti, J.P., Lousado, L., Magno, L.A.V. and Birbrair, A. (2017) Hypothalamic Neurons Take Center Stage in the Neural Stem Cell Niche. Cell Stem Cell, 21, 293-294. https://doi.org/10.1016/j.stem.2017.08.005

  43. NOTES

    *通讯作者。

期刊菜单