Advances in Clinical Medicine
Vol. 12  No. 11 ( 2022 ), Article ID: 58239 , 10 pages
10.12677/ACM.2022.12111515

自噬现象在肾纤维化中的作用

解雅琪1*,左宏伟1*,王文亭2,林春华2,王科3#

1滨州医学院第二临床医学院,山东 烟台

2青岛大学附属烟台毓璜顶医院,山东 烟台

3青岛大学附属医院,山东 青岛

收稿日期:2022年10月21日;录用日期:2022年11月16日;发布日期:2022年11月23日

摘要

肾脏纤维化是所有慢性肾病发展为终末期肾病的最终共同途径。自噬是一种高度保守的溶酶体降解途径,在维持所有主要类型的肾细胞,包括肾小管细胞、足细胞、系膜细胞和肾小球内皮细胞的维持中发挥重要作用。自噬功能障碍与各种肾脏病理的发病机制密切相关。本文,我们就自噬在肾脏固有细胞及其在相关肾脏疾病中的病理作用和调控进行综述。探讨针对自噬的途径和针对肾脏纤维化的特异治疗,来预防和治疗肾纤维化和相关肾脏疾病。

关键词

自噬,细胞凋亡,肾纤维化,糖尿病肾病,综述

The Role of Autophagy in Renal Fibrosis

Yaqi Xie1*, Hongwei Zuo1*, Wenting Wang2, Chunhua Lin2, Ke Wang3#

1The Second Medical College of Binzhou Medical University, Yantai Shandong

2The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong

3The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Oct. 21st, 2022; accepted: Nov. 16th, 2022; published: Nov. 23rd, 2022

ABSTRACT

This renal fibrosis is the final common pathway by which all chronic kidney diseases develop into end-stage renal disease. Autophagy is a highly conserved lysosomal degradation pathway that plays an important role in the maintenance of all major types of renal cells, including tubular cells, podocytes, mesangial cells and glomerular endothelial cells. Autophagic dysfunction is closely related to the pathogenesis of various renal pathologies. In this article, we review the role and regulation of autophagy in intrinsic renal cells and related renal diseases. Objective: To explore the specific therapy for renal fibrosis and the approach to autophagy, in order to prevent and treat renal fibrosis and related renal diseases.

Keywords:Autophagy, Cell Apoptosis, Renal Fibrosis, Diabetic Nephropathy, Review

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肾脏纤维化是各种慢性肾脏病的最终常见途径,反映了肾脏修复和瘢痕形成之间的平衡,尽管有些患者通过透析或移植得以存活,但根本的问题仍未解决。由于对导致肾纤维化的细机制的不完全了解,找到有效调节其进展的方法是一个亟待解决的重要临床问题。“自噬”最初由克里斯蒂安·德·杜夫于1963年提出,源自希腊语,指“自食” [1],这是一个从酵母到哺乳动物的进化上保守的分解代谢过程,通过部分胞质成分和细胞器被传递到溶酶体进行降解和循环回收 [2] [3]。自噬可以非选择性地分解整体细胞质,也可以选择性地识别和消化特定的细胞器,如线粒体(mitochondrion)、内质网(Endoplasmic reticulum, ER)和溶酶体(lysosome)、蛋白质聚集物、脂滴(lipid droplet)和细胞内病原体 [2] [3] [4]。生理条件下,大多数细胞中的基础水平的自噬是清除潜在有害或者是不需要的细胞质材料的重要机制,这对维持细胞的平衡十分重要。在细胞“饥饿”或者“营养匮乏”期间,自噬机制被激活,以分解并回收细胞质,补充生物合成前体(氨基酸、脂质、核苷酸)和其他能量来源 [5] [6]。在其他更广泛的病理条件及细胞环境改变的情况下,自噬被诱导产生,更是作为一种适应性和防御性的策略,让细胞能从容应对生存压力;相反,细胞自噬调控也会有助于某些疾病的发生发展,如癌症和心血管疾病 [5] [6] [7] [8]。

本文对自噬及细胞凋亡现象在肾纤维化中的最新研究作一综述。

2. 自噬概述

自噬的过程由一系列细胞事件组成。它是由在被隔离的目标细胞质周围形成一个被称为“双膜”的杯状结构的吞噬体启动的,然后吞噬体的扩张和关闭形成一个自噬小体。然后自噬小体与溶酶体对接并融合形成自噬溶酶体,其中自噬小体内膜和细胞质底物被酸性溶酶体水解酶降解。最终,所产生的降解产物被释放以供回收利用 [2] [3]。有三种类型的哺乳动物细胞的自噬:巨自噬、微自噬和伴侣自噬,需要降解的底物类型和运送到溶酶体的方式不同。巨自噬(在这里称为自噬)是最典型的形式和重点,始于被双膜自噬体包裹大的胞质结构,然后与溶酶体融合。微自噬涉及直接吞噬溶酶体膜内陷内的小细胞质物质。伴侣自噬是一种选择性未折叠蛋白通过伴侣蛋白通过溶酶体膜直接运输进行降解的过程 [3] [9] [10]。自噬体膜的起源几十年来一直有争议,但现在人们普遍认为,自噬体的起始与磷脂酰肌醇3磷酸(PtdIns3P)富集的膜室有关,该膜室似乎与内质网(ER)有关。在吞噬体的起始部位,内质网上形成了一个“Ω”形状的突起(也称为巨噬体)并作为自噬体生物发生的支架 [11] [12]。此外,吞噬体通过囊泡运输进出吞噬器,或通过短暂的膜接触和蛋白质和脂质的交换来生长和扩张 [11] [12] [13]。

在哺乳动物中,自噬小体的生物发生由不同步骤的核心机制协调调控。在核心机制的上游,自噬受到一个复杂的信号网络的严格调控 [14] [15] [16]。雷帕霉素(mTOR)通路的机制靶点,特别是mTOR复合物1 (mTORC1),作为自噬的传感器和主负调控因子。受营养物质、生长因子和能量刺激的多种信号通路可能在mTORC1上整合和合并以调节自噬。mTOR独立的机制也与自噬调控有关。多种细胞应激,包括缺氧应激、氧化应激、内质网应激和DNA损伤,也可能通过各种信号通路诱导自噬 [15]。

3. 肾脏中细胞的自噬现象

自噬是维持肾脏主要类型的细胞稳态的重要机制,包括足细胞、系膜细胞、肾小球内皮细胞和肾小管上皮细胞。

3.1. 足细胞中的自噬

足细胞,又称肾小球内脏上皮细胞,是一种高度特化的上皮细胞,具有较大的细胞体和初级突,进一步分支到细的次要足突。邻近足细胞的足突交错并包裹在包围肾小球毛细血管的肾小球基底膜(GBM)的外部。足细胞在维持肾小球滤过屏障的选择性通透性和结构完整性方面起着关键作用。终末分化的足细胞不能增殖,足细胞替代的机制有限 [17]。因此,足细胞是肾小球中最脆弱的组成部分,可能受到各种损伤,导致蛋白尿和肾小球硬化,导致许多肾小球疾病的发病机制。足细胞作为长寿细胞,依赖细胞质量控制机制来维持其结构和功能稳态,自噬在正常和疾病条件下都是这种机制之一 [18]。

与肾脏中其他类型的细胞相比,足细胞,特别是分化成熟的足细胞,表现出高水平的构成性自噬。在正常成年大鼠的肾小球中以及有条件固定化的小鼠足细胞中,高水平的基础自噬主要出现在分化的足细胞中 [19]。最近的研究进一步表明,老年肾脏足细胞的自噬存在缺陷 [20] [21]。值得注意的是,与其他肾小球细胞相比,mTORC1活性在足细胞中更高,这似乎是出生后生长所必需的 [22]。足细胞在毛细血管环阶段停止细胞分裂;因此,肾小球体积的增加必须伴随着每个足细胞的mTORC1依赖的生长来覆盖肾小球毛细血管 [23] [24]。足细胞中基础自噬和mTORC1的高水平似乎与mTORC1负调控自噬的概念相矛盾;然而,这可能表明存在一种独特的机制,涉及mTORC1和自噬的相互功能和协调。TOR-自噬空间耦合室(TASCC)是一种独特的细胞质室,已在足细胞中被发现 [22]。在功能上,该系统在产生足够的分泌蛋白和恒定的能量和来源供应方面发挥着有益的作用。更重要的是,它还创造了一种自我调节机制,其中自噬溶酶体降解产物增强mTOR的富集和活性,进而抑制自噬和循环溶酶体。这种反馈调节被称为自噬溶酶体重组(ALR),对于mTOR通路和自噬–溶酶体通路之间的平衡和微调非常重要 [13] [25]。

3.2. 系膜细胞的自噬

肾小球系膜细胞是位于系膜内的特殊的收缩细胞。它们为肾小球簇提供结构支持,并与邻近的足细胞和肾小球内皮细胞一起形成一个功能单元,以调节肾小球滤过。系膜细胞在系膜中产生ECM成分,并在维持系膜基质稳态中发挥重要作用。自噬在系膜细胞中的作用尚不清楚。转化生长因子(TGF)-β1诱导小鼠系膜细胞自噬,并防止血清剥夺诱导的细胞凋亡。TGF-β1在系膜细中对自噬的诱导是由TGF-β活化激酶1 (TAK1)和三碘化磷k蛋白激酶B (PKB)/Akt通路介导的。TGF-β1未能挽救自噬缺陷的系膜细胞免于血清剥夺诱导的细胞凋亡,进一步支持了自噬在系膜细胞中的促生存作用 [26]。系膜自噬的保护作用也与其维持基质蛋白稳态的作用有关。从自噬缺陷小鼠中分离的原代小鼠系膜细胞表达较高的I型胶原蛋白。在对TGF-β1的反应中,I型胶原蛋白和mRNA水平均被诱导升高,值得注意的是,增加的I型胶原蛋白与LC3和溶酶体标记物溶酶体相关膜蛋白1 (LAMP1)定位在同一处。通过BECN1敲低或溶酶体抑制剂抑制自噬,进一步增加了I型胶原蛋白的积累,而不影响mRNA的表达。自噬的上调降低了野生型的I型胶原蛋白,但在自噬缺陷的系膜细胞中没有。这些结果表明,自噬通过促进胶原蛋白过度沉积中发挥着重要的作用 [26]。

3.3. 肾小球内皮细胞的自噬

肾小球内皮细胞定位于GBM的内侧,是肾小球滤过屏障的重要组成部分。肾微血管系统也通过调节血管舒张力、血管通透性、白细胞募集作用和抗血栓形成反应,在肾脏生理学中发挥关键作用。肾小球内皮功能障碍与CKD和肾纤维化的进展有关;然而,其潜在的机制在很大程度上仍不明确。到目前为止,很少有学者研究自噬在肾小球内皮细胞中的作用。Xavier [27] 等人表明,TGF-β受体家族的竞争性受体拮抗剂,被称为骨形态发生蛋白和激活素膜结合抑制剂(BAMBI)在经TGFβ处理的培养的小鼠肾小球内皮细胞中增加。相比之下,经“血清饥饿法”或使用雷帕霉素导致BAMBI下降,能够部分被溶酶体抑制剂巴非霉素A1,部分被3-甲基腺嘌呤抑制,但这并不是通过蛋白酶体抑制剂。这些结果表明,自噬在调节内皮细胞的BAMBI周转中发挥作用,这可能通过BAMBI介导的TGF-β途径调节来影响肾小球内皮细胞功能 [27]。

3.4. 近端肾小管上皮细胞(PTECs)的自噬

PTECs是急性肾损伤(AKI)和慢性肾病(CKDs)的关键靶点。在生理条件下,PTECs表现出相对较低水平的自噬。近端小管特异性敲除Atg5或Atg7的小鼠显示进行性肾损伤,并出现肾过早老化,这表明变形线粒体、p62/SQSTM1和多泛素阳性包涵体的积累,以及小管细胞凋亡和肾间质纤维化的增加。这些结果表明,在正常条件下,PTECs需要低但足够水平的基础自噬来维持细胞稳态,而细胞需要更高水平的自噬来应对与年龄相关的应激 [28] [29]。在各种应激条件下,自噬在PTECs中被显著激活,并对肾小管损伤和细胞死亡发挥肾保护作用 [7] [30] [31] [32] [33]。

4. 肾脏纤维化及相关肾脏疾病中的自噬作用

肾纤维化以细胞外基质(ECM)在肾小球和小管间质中过度沉积为特征,是慢性肾脏病(CKD)的共同病理特征,无论最初的病因如何,肾纤维化的发病机制都涉及多种细胞事件的极其复杂的相互作用,包括成纤维细胞的过度增殖和活化、ECM沉积增加、炎症细胞浸润、肾小管萎缩、肾小球硬化和微血管稀少 [34] [35] [36]。近年来,越来越多的证据表明,自噬失调也可能参与了肾纤维化及相关肾脏疾病的发病机制。

4.1. 糖尿病肾病(DKD)自噬的研究

DKD是糖尿病的严重并发症,也是世界范围内导致CKD和终末期肾病(ESRD)的主要原因 [37]。DKD的发病机制极其复杂,涉及高血糖介导的代谢改变、血流动力学异常和细胞内应激之间的多因素相互作用 [38] [39]。DKD的临床表现是持续白蛋白尿或蛋白尿,随后肾小球滤过率(GFR)降低、肾小管细胞损伤和肾小管间质病变,最终导致肾功能衰竭。DKD的其他病理特征包括ECM成分的积累、GBM和肾小管基底膜的增厚、系膜扩张、肾小球硬化、足细胞消退、肾小管萎缩、传入和传出小动脉透明化 [40]。

最新证据表明,糖尿病肾脏的自噬功能受损。DKD中有缺陷的自噬与多种营养感知通路的异常有关,包括mTOR、AMP激活的蛋白激酶(AMPK)和sirtuins (SIRTs)。mTOR,特别是mTORC1,在过度的营养条件下被葡萄糖、氨基酸和生长因子水平的增加所激活 [41] [42]。mTORC1通过磷酸化ULK1 (一种酵母自噬启动ATG1激酶同源蛋白)来抑制其活性来负调控自噬。在营养/能量消耗时,AMPK和SIRTs分别被激活,以应对细胞内AMP和烟酰胺腺嘌呤二核苷酸(NAD+)水平的增加 [43]。与mTORC1相比,AMPK和SIRTs都是自噬的正调控因子。AMPK要么直接磷酸化ULK1以促进自噬,要么抑制mTORC1以诱导自噬 [44] [45] [46]。SIRT1是SIRTs家族中研究最多的成员,它通过去乙酰化ATG5、ATG7和LC3来促进自噬。SIRT1还能去乙酰化转录因子ForkheadO3a (FoxO3a),导致BNIP3 (BCL2/腺病毒E1B19-kDa相互作用蛋白3)的激活 [47]。此外,SIRT1与AMPK和mTOR交叉作用以调节自噬 [48] [49]。在糖尿病条件下,这些营养感知通路的失调导致了自噬缺陷和DKD发病 [37] [50] [51]。mTORC1的过度激活经常出现在1型和2型DKDs患者和动物模型中都很常见 [52] [53] [54]。在非糖尿病小鼠中,mTORC1特异性激活诱导肾损伤,重现了DKD的特征,包括GBM增厚、ECM扩张、足细胞丢失和蛋白尿 [55]。mTORC1的过度激活与DKD的发展之间的因果关系进一步在小鼠模型和人类DKD样本中得到证实 [56]。在糖尿病PTECs中,mTORC1的过度活化也能诱导细胞凋亡和小管肥大 [57] [58]。相反,抑制mTORC1对DKD具有肾保护作用。通过雷帕霉素药理抑制mTORC1可减轻STZ (链脲佐菌素)诱导的糖尿病大鼠的肾损伤,并减轻促炎和促纤维化细胞因子的表达 [59] [60]。雷帕霉素还减少了STZ诱导的糖尿病大鼠和db/db小鼠的蛋白尿、肾小球硬化、系膜扩张和肾肥大 [52] [57] [61] [62] [63]。在长时间高糖处理后,雷帕霉素挽救了足细胞的自噬抑制 [64]。雷帕霉素通过抑制mTORC1对自噬激活的保护作用也在STZ诱导的糖尿病小鼠中得到了证实 [65]。Torin1(mTOR抑制剂)对mTORC1的药理抑制也挽救了具有高水平晚期糖基化终末产物(AGEs)的db/db小鼠和AGEs刺激的足细胞中的自噬 [66]。在糖尿病Wistar脂肪大鼠中,通过极低蛋白饮食抑制mTORC1可恢复PTECs的自噬,并防止小管细胞损伤、炎症和间质纤维化 [67]。这些发现表明,mTOR信号通路的过度激活,通过负调控自噬,在DKD的发病机制中起着关键作用。

AMPK的活性在1型和2型糖尿病肾脏中都受到抑制,重要的是,这可以被几种AMPK激活剂逆转,导致自噬的恢复和糖尿病肾脏损伤的减弱。与AMPK类似,在人和动物的DKD模型中,SIRT1在肾细胞中表达下调,而SIRT1的激活可以保护肾脏免受糖尿病损伤。在近端小管中特异性过表达SIRT1的小鼠可以抵抗糖尿病相关的足细胞损伤进展和随后的蛋白尿 [68]。白藜芦醇通过恢复SIRT1活性,对足细胞和系膜细胞均有益处。在2型糖尿病大鼠和缺氧处理的PTECs中,白藜芦醇具有SIRT1的肾保护作用和自噬的作用 [69]。

4.2. 肾间质纤维化诱导中的自噬(单侧输尿管梗阻UUO或TGF-β1过表达的影响)

到目前为止,大多数关于自噬在肾间质纤维化中的作用的研究都是在UUO (单侧输尿管梗阻)或TGF-β1诱导肾间质纤维化的模型中进行的,其研究结果存在争议。在UUO处理后的小鼠中,肾小管自噬被激活,肾小管细胞凋亡 [70] [71] [72]。在这种情况下,自噬和细胞凋亡共同作用来诱导肾小管萎缩和肾单位丢失 [71]。氧化应激介导的线粒体损伤可能促进肾小管的自噬和凋亡,这可能在促进UUO的肾小管分解中发挥作用 [72]。Koesters [73] 等人使用四环素处理的小鼠模型,特异性地在肾小管中过量表达TGF-β1,显示了TGF-β1的持续表达促进了肾小管重自噬现象的发生,导致肾小管去分化并伴有广泛的肾小球周围纤维化。值得注意的是,这种退化细胞凋亡TUNEL染色不阳性,这表明自噬可能是TGF-β1诱导的肾纤维化肾小管萎缩的关键驱动因素 [73]。通过药理和遗传抑制方法,进一步证明了自噬在UUO小鼠模型和TGF-β1处理的PTECs中的促纤维化作用 [74]。在UUO后,近端小管的自噬被持续激活。自噬的药理和遗传阻断可减轻间质纤维化,同时减轻小管细胞凋亡、间质巨噬细胞浸润和成纤维细胞生长因子2 (FGF2)的产生。在PTECs的原代培养中,TGF-β1以自噬依赖的方法诱导纤维连接蛋白积累和细胞死亡 [74]。

4.3. 急性肾损伤(AKI)中的自噬

AKI是主要由肾毒性药物、肾缺血再灌注和脓毒症引起的肾脏疾病,与短期疾病(高发病率和死亡率)和长期疾病(CKD和ESRD)相关 [75] [76]。AKI的发病机制是多因素的,涉及微血管、肾脏和炎症因子之间复杂的相互作用。肾小管细胞损伤和死亡是其主要病理特征 [75] [76] [77]。在顺铂的诱导下,培养的肾小管细胞和小鼠模型中细胞自噬被激活,证实了肾小管细胞损伤和死亡是急性肾损伤的关键性病理特征 [78]。两项研究 [78] [79] 都表明自噬对肾小管细胞有保护作用。后续研究进一步证实了自噬激活及其在肾缺血/缺氧性AKI中的保护作用 [80]。有进一步研究表明,使用肾小管特异性自噬基因敲除的小鼠模型,证明了肾小管细胞自噬在AKI中的保护作用 [29] [81] [82]。

5. 结语

肾脏纤维化发病率的逐年上升和逐渐年轻化趋势意味着对肾脏纤维化发生发展和治疗的深入研究具有重大的临床价值,细胞凋亡及自噬现象作为肾脏纤维化发生发展的重要致病机制,应开展更加广泛深入的研究,自噬对于维持包括足细胞、系膜细胞、肾小球内皮细胞和肾小管上皮细胞在内的肾常驻细胞的细胞稳态至关重要。这些细胞的自噬缺陷与CKD如DKD的发展有关。自噬是被某些机制诱导产生来应对AKI,对肾脏产生保护作用。肾损伤后,受严格调控的自噬可能参与适应性肾脏修复,而自噬失调可能导致适应修复不良,导致AKI向CKD过渡。自噬在肾间质纤维化中的作用是多方面的和复杂的。自噬在肾纤维化及相关肾脏疾病发病机制中的作用以及自噬的调控机制有待进一步研究。全面了解自噬在肾纤维化中的调控和病理作用,将有助于发现新的治疗策略,可以靶向自噬来预防和治疗纤维化相关的CKD。

基金项目

山东省自然科学基金(ZR2019MH132);烟台市科技发展计划(2019MSGY13、2020MSGY079);泰山学者青年专家(tsqn202103198)。

文章引用

解雅琪,左宏伟,王文亭,林春华,王 科. 自噬现象在肾纤维化中的作用
The Role of Autophagy in Renal Fibrosis[J]. 临床医学进展, 2022, 12(11): 10522-10531. https://doi.org/10.12677/ACM.2022.12111515

参考文献

  1. 1. Klionsky, D.J. (2008) Autophagy Revisited: A Conversation with Christian de Duve. Autophagy, 4, 740-743. https://doi.org/10.4161/auto.6398

  2. 2. Mizushima, N. and Komatsu, M. (2011) Autophagy: Renovation of Cells and Tissues. Cell, 147, 728-741. https://doi.org/10.1016/j.cell.2011.10.026

  3. 3. Mizushima, N., Levine, B., Cuervo, A.M. and Klionsky, D.J. (2008) Autophagy Fights Disease through Cellular Self-Digestion. Nature, 451, 1069-1075. https://doi.org/10.1038/nature06639

  4. 4. Zaffagnini, G. and Martens, S. (2016) Mechanisms of Selective Autoph-agy. Journal of Molecular Biology, 428, 1714-1724. https://doi.org/10.1016/j.jmb.2016.02.004

  5. 5. Sionov, R.V., Vlahopoulos, S.A. and Granot, Z. (2015) Regulation of Bim in Health and Disease. Oncotarget, 6, 23058-23134. https://doi.org/10.18632/oncotarget.5492

  6. 6. Dikic, I. and Elazar, Z. (2018) Mechanism and Medical Implications of Mammalian Autophagy. Nature Reviews Molecular Cell Biology, 19, 349-364. https://doi.org/10.1038/s41580-018-0003-4

  7. 7. Huber, T.B., Edelstein, C.L., Hartleben, B., Inoki, K., Jiang, M., Koya, D., et al. (2012) Emerging Role of Autophagy in Kidney Function, Diseases and Aging. Au-tophagy, 8, 1009-1031. https://doi.org/10.4161/auto.19821

  8. 8. Choi, A.M., Ryter, S.W. and Levine, B. (2013) Autophagy in Human Health and Disease. The New England Journal of Medicine, 368, 651-662. https://doi.org/10.1056/NEJMra1205406

  9. 9. Ravikumar, B., Sarkar, S., Davies, J.E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z.W., et al. (2010) Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 90, 1383-1435. https://doi.org/10.1152/physrev.00030.2009

  10. 10. Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogene-sis of Disease. Cell, 132, 27-42. https://doi.org/10.1016/j.cell.2007.12.018

  11. 11. Yang, Z. and Klionsky, D.J. (2010) Mammalian Autophagy: Core Molecular Machinery and Signaling Regulation. Current Opinion in Cell Biology, 22, 124-131. https://doi.org/10.1016/j.ceb.2009.11.014

  12. 12. Rubinsztein, D.C., Shpilka, T. and Elazar, Z. (2012) Mechanisms of Autophagosome Biogenesis. Current Biology, 22, R29-R34. https://doi.org/10.1016/j.cub.2011.11.034

  13. 13. Yu, L., Chen, Y. and Tooze, S.A. (2018) Autophagy Pathway: Cellular and Molecular Mechanisms. Autophagy, 14, 207-215. https://doi.org/10.1080/15548627.2017.1378838

  14. 14. He, C. and Klionsky, D.J. (2009) Regulation Mechanisms and Signaling Pathways of Autophagy. Annual Review of Genetics, 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910

  15. 15. Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo, A.A., et al. (2016) Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (3rd Edition). Autophagy, 12, 1-222. https://doi.org/10.1080/15548627.2015.1100356

  16. 16. Mehrpour, M., Esclatine, A., Beau, I. and Codogno, P. (2010) Overview of Macroautophagy Regulation in Mammalian Cells. Cell Research, 20, 748-762. https://doi.org/10.1038/cr.2010.82

  17. 17. Pavenstädt, H., Kriz, W. and Kretzler, M. (2003) Cell Biology of the Glo-merular Podocyte. Physiological Reviews, 83, 253-307. https://doi.org/10.1152/physrev.00020.2002

  18. 18. Zhang, L., Livingston, M.J., Chen, J.K. and Dong, Z. (2014) Autophagy in Podocytes. Contributions to Nephrology, 183, 83-100.

  19. 19. Asanuma, K., Tanida, I., Shirato, I., Ueno, T., Takahara, H., Nishitani, T., et al. (2003) MAP-LC3, a Promising Autophagosomal Marker, Is Processed during the Differentiation and Recovery of Podocytes from PAN Ne-phrosis. FASEB Journal, 17, 1165-1167. https://doi.org/10.1096/fj.02-0580fje

  20. 20. Cui, J., Bai, X.Y., Shi, S., Cui, S., Hong, Q., Cai, G., et al. (2012) Age-Related Changes in the Function of Autophagy in Rat Kidneys. Age (Dordrecht, Netherlands), 34, 329-339. https://doi.org/10.1007/s11357-011-9237-1

  21. 21. Wanner, N., Hartleben, B., Herbach, N., Goedel, M., Stickel, N., Zeiser, R., et al. (2014) Unraveling the Role of Podocyte Turnover in Glomerular Aging and Injury. Journal of the American Society of Nephrology, 25, 707-716. https://doi.org/10.1681/ASN.2013050452

  22. 22. Narita, M., Young, A.R., Arakawa, S., Samarajiwa, S.A., Nakashima, T., Yoshida, S., et al. (2011) Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes. Science, 332, 966-970. https://doi.org/10.1126/science.1205407

  23. 23. Hartleben, B., Wanner, N. and Huber, T.B. (2014) Autophagy in Glomerular Health and Disease. Seminars in Nephrology, 34, 42-52. https://doi.org/10.1016/j.semnephrol.2013.11.007

  24. 24. Inoki, K. (2014) mTOR Signaling in Autophagy Regulation in the Kidney. Seminars in Nephrology, 34, 2-8.

  25. 25. Yu, L., McPhee, C.K., Zheng, L., Mardones, G.A., Rong, Y., Peng, J., et al. (2010) Termination of Autophagy and Reformation of Lysosomes Regulated by mTOR. Nature, 465, 942-946. https://doi.org/10.1038/nature09076

  26. 26. Kim, J., Shon, E., Kim, C.S. and Kim, J.S. (2012) Renal Podo-cyte Injury in a Rat Model of Type 2 Diabetes Is Prevented by Metformin. Experimental Diabetes Research, 2012, Arti-cle ID: 210821.

  27. 27. Xavier, S., Gilbert, V., Rastaldi, M.P., Krick, S., Kollins, D., Reddy, A., et al. (2010) BAMBI Is Expressed in Endothelial Cells and Is Regulated by Lysosomal/Autolysosomal Degradation. PLOS ONE, 5, e12995. https://doi.org/10.1371/journal.pone.0012995

  28. 28. Kimura, T., Takabatake, Y., Takahashi, A., Kaimori, J.Y., Mat-sui, I., Namba, T., et al. (2011) Autophagy Protects the Proximal Tubule from Degeneration and Acute Ischemic Injury. Journal of the American Society of Nephrology, 22, 902-913. https://doi.org/10.1681/ASN.2010070705

  29. 29. Liu, S., Hartleben, B., Kretz, O., Wiech, T., Igarashi, P., Mizushima, N., et al. (2012) Autophagy Plays a Critical Role in Kidney Tubule Maintenance, Aging and Ischemia-Reperfusion Injury. Autophagy, 8, 826-837. https://doi.org/10.4161/auto.19419

  30. 30. Jiang, M., Wei, Q., Dong, G., Komatsu, M., Su, Y. and Dong, Z. (2012) Autophagy in Proximal Tubules Protects against Acute Kidney Injury. Kidney International, 82, 1271-1283. https://doi.org/10.1038/ki.2012.261

  31. 31. Havasi, A. and Dong, Z. (2016) Autophagy and Tubular Cell Death in the Kidney. Seminars in Nephrology, 36, 174-188. https://doi.org/10.1016/j.semnephrol.2016.03.005

  32. 32. Zhang, D., Pan, J., Xiang, X., Liu, Y., Dong, G., Livingston, M.J., et al. (2016) Protein Kinase Cδ Suppresses Autophagy to Induce Kidney Cell Apoptosis in Cisplatin Nephrotoxicity. Journal of the American Society of Nephrology, 28, 1131-1144.

  33. 33. Tang, C., Han, H., Yan, M., Zhu, S., Liu, J., Liu, Z., et al. (2018) PINK1-PRKN/PARK2 Pathway of Mitophagy Is Activated to Protect against Renal Ischemia-Reperfusion Injury. Autophagy, 14, 880-897. https://doi.org/10.1080/15548627.2017.1405880

  34. 34. Liu, Y. (2011) Cellular and Molecular Mechanisms of Renal Fibrosis. Nature Reviews Nephrology, 7, 684-696. https://doi.org/10.1038/nrneph.2011.149

  35. 35. Duffield, J.S. (2014) Cellular and Molecular Mechanisms in Kidney Fibrosis. The Journal of Clinical Investigation, 124, 2299-2306. https://doi.org/10.1172/JCI72267

  36. 36. Humphreys, B.D. (2018) Mechanisms of Renal Fibrosis. Annual Review of Physiology, 80, 309-326. https://doi.org/10.1146/annurev-physiol-022516-034227

  37. 37. Levin, A., Tonelli, M., Bonventre, J., Coresh, J., Donner, J.A., Fogo, A.B., et al. (2017) Global Kidney Health 2017 and beyond: A Roadmap for Closing Gaps in Care, Research, and Policy. The Lancet, 390, 1888-1917.

  38. 38. Brownlee, M. (2005) The Pathobiology of Diabetic Complica-tions: A Unifying Mechanism. Diabetes, 54, 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615

  39. 39. Forbes, J.M. and Cooper, M.E. (2013) Mechanisms of Diabetic Complications. Physiological Reviews, 93, 137-188. https://doi.org/10.1152/physrev.00045.2011

  40. 40. Abbate, M., Zoja, C. and Remuzzi, G. (2006) How Does Pro-teinuria Cause Progressive Renal Damage. Journal of the American Society of Nephrology, 17, 2974-2984. https://doi.org/10.1681/ASN.2006040377

  41. 41. Wellen, K.E. and Thompson, C.B. (2010) Cellular Metabolic Stress: Considering How Cells Respond to Nutrient Excess. Molecular Cell, 40, 323-332.

  42. 42. Zoncu, R., Efeyan, A. and Sa-batini, D.M. (2011) mTOR: From Growth Signal Integration to Cancer, Diabetes and Ageing. Nature Reviews Molecular Cell Biology, 12, 21-35. https://doi.org/10.1038/nrm3025

  43. 43. Steinberg, G.R. and Kemp, B.E. (2009) AMPK in Health and Disease. Physiological Reviews, 89, 1025-1078. https://doi.org/10.1152/physrev.00011.2008

  44. 44. Lee, J.W., Park, S., Takahashi, Y. and Wang, H.G. (2010) The Association of AMPK with ULK1 Regulates Autophagy. PLOS ONE, 5, e15394. https://doi.org/10.1371/journal.pone.0015394

  45. 45. Kim, J., Kundu, M., Viollet, B. and Guan, K.L. (2011) AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141. https://doi.org/10.1038/ncb2152

  46. 46. Alers, S., Löffler, A.S., Wesselborg, S. and Stork, B. (2012) Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks. Molecular and Cellular Biology, 32, 2-11. https://doi.org/10.1128/MCB.06159-11

  47. 47. Kume, S., Uzu, T., Horiike, K., Chin-Kanasaki, M., Isshiki, K., Araki, S., et al. (2010) Calorie Restriction Enhances Cell Adaptation to Hypoxia through Sirt1-Dependent Mitochondrial Au-tophagy in Mouse Aged Kidney. The Journal of Clinical Investigation, 120, 1043-1055. https://doi.org/10.1172/JCI41376

  48. 48. Cantó, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., et al. (2009) AMPK Regulates Energy Expenditure by Modulating NAD+ Metabolism and SIRT1 Activity. Nature, 458, 1056-1060. https://doi.org/10.1038/nature07813

  49. 49. Ghosh, H.S., McBurney, M. and Robbins, P.D. (2010) SIRT1 Negative-ly Regulates the Mammalian Target of Rapamycin. PLOS ONE, 5, e9199. https://doi.org/10.1371/journal.pone.0009199

  50. 50. Kume, S., Thomas, M.C. and Koya, D. (2012) Nutrient Sensing, Autophagy, and Diabetic Nephropathy. Diabetes, 61, 23-29. https://doi.org/10.2337/db11-0555

  51. 51. Yang, D., Livingston, M.J., Liu, Z., Dong, G., Zhang, M., Chen, J.K., et al. (2018) Autophagy in Diabetic Kidney Disease: Regula-tion, Pathological Role and Therapeutic Potential. Cellular and Molecular Life Sciences, 75, 669-688. https://doi.org/10.1007/s00018-017-2639-1

  52. 52. Mori, H., Inoki, K., Masutani, K., Wakabayashi, Y., Komai, K., Nakagawa, R., et al. (2009) The mTOR Pathway Is Highly Activated in Diabetic Nephropathy and Rapamycin Has a Strong Therapeutic Potential. Biochemical and Biophysical Research Communications, 384, 471-475. https://doi.org/10.1016/j.bbrc.2009.04.136

  53. 53. Nagai, K., Matsubara, T., Mima, A., Sumi, E., Kanamori, H., Iehara, N., et al. (2005) Gas6 Induces Akt/mTOR-Mediated Mesangial Hypertrophy in Diabetic Nephropathy. Kidney International, 68, 552-561. https://doi.org/10.1111/j.1523-1755.2005.00433.x

  54. 54. Zhang, M.Z., Wang, Y., Paueksakon, P. and Harris, R.C. (2014) Epidermal Growth Factor Receptor Inhibition Slows Progression of Diabetic Nephropathy in Association with a Decrease in Endoplasmic Reticulum Stress and an Increase in Autophagy. Diabetes, 63, 2063-2072.

  55. 55. Inoki, K., Mori, H., Wang, J., Suzuki, T., Hong, S., Yoshida, S., et al. (2011) mTORC1 Activation in Podocytes Is a Critical Step in the Development of Diabetic Nephropathy in Mice. The Journal of Clinical Investigation, 121, 2181-2196. https://doi.org/10.1172/JCI44771

  56. 56. Gödel, M., Hartleben, B., Herbach, N., Liu, S., Zschiedrich, S., Lu, S., et al. (2011) Role of mTOR in Podocyte Function and Diabetic Nephropathy in Humans and Mice. The Journal of Clinical Investigation, 121, 2197-2209. https://doi.org/10.1172/JCI44774

  57. 57. Sakaguchi, M., Isono, M., Isshiki, K., Sugimoto, T., Koya, D. and Kashiwagi, A. (2006) Inhibition of mTOR Signaling with Rapamycin Attenuates Renal Hypertrophy in the Early Diabetic Mice. Biochemical and Biophysical Research Communications, 340, 296-301. https://doi.org/10.1016/j.bbrc.2005.12.012

  58. 58. Velagapudi, C., Bhandari, B.S., Abboud-Werner, S., Simone, S., Abboud, H.E. and Habib, S.L. (2011) The Tuberin/mTOR Pathway Promotes Apoptosis of Tubular Epithelial Cells in Diabetes. Journal of the American Society of Nephrology, 22, 262-273. https://doi.org/10.1681/ASN.2010040352

  59. 59. Wittmann, S., Daniel, C., Stief, A., Vogelbacher, R., Amann, K. and Hugo, C. (2009) Long-Term Treatment of Sirolimus But Not Cyclosporine Ameliorates Diabetic Nephropathy in the Rat. Transplantation, 87, 1290-1299. https://doi.org/10.1097/TP.0b013e3181a192bd

  60. 60. Yang, Y., Wang, J., Qin, L., Shou, Z., Zhao, J., Wang, H., et al. (2007) Rapamycin Prevents Early Steps of the Development of Diabetic Nephropathy in Rats. American Journal of Nephrology, 27, 495-502. https://doi.org/10.1159/000106782

  61. 61. Lloberas, N., Cruzado, J.M., Franquesa, M., Herrero-Fresneda, I., Torras, J., Alperovich, G., et al. (2006) Mammalian Target of Rapamycin Pathway Blockade Slows Progression of Diabetic Kidney Disease in Rats. Journal of the American Society of Nephrology, 17, 1395-1404. https://doi.org/10.1681/ASN.2005050549

  62. 62. Sataranatarajan, K., Mariappan, M.M., Lee, M.J., Feliers, D., Choudhury, G.G., Barnes, J.L., et al. (2007) Regulation of Elongation Phase of mRNA Translation in Diabetic Nephrop-athy: Amelioration by Rapamycin. The American Journal of Pathology, 171, 1733-1742. https://doi.org/10.2353/ajpath.2007.070412

  63. 63. Stridh, S., Palm, F., Takahashi, T., Ikegami-Kawai, M. and Han-sell, P. (2015) Inhibition of mTOR Activity in Diabetes Mellitus Reduces Proteinuria But Not Renal Accumulation of Hyaluronan. Upsala Journal of Medical Sciences, 120, 233-240. https://doi.org/10.3109/03009734.2015.1062442

  64. 64. Fang, L., Zhou, Y., Cao, H., Wen, P., Jiang, L., He, W., et al. (2013) Autophagy Attenuates Diabetic Glomerular Damage through Protection of Hyperglycemia-Induced Podocyte In-jury. PLOS ONE, 8, e60546.

  65. 65. Xiao, T., Guan, X., Nie, L., Wang, S., Sun, L., He, T., et al. (2014) Rapamycin Promotes Podocyte Autophagy and Ameliorates Renal Injury in Diabetic Mice. Molecular and Cellular Biochemistry, 394, 145-154. https://doi.org/10.1007/s11010-014-2090-7

  66. 66. Zhao, X., Chen, Y., Tan, X., Zhang, L., Zhang, H., Li, Z., et al. (2018) Advanced Glycation End-Products Suppress Autophagic Flux in Podocytes by Activating Mammalian Target of Rapamycin and Inhibiting Nuclear Translocation of Transcription Factor EB. The Journal of Pathology, 245, 235-248. https://doi.org/10.1002/path.5077

  67. 67. Kitada, M., Ogura, Y., Suzuki, T., Sen, S., Lee, S.M., Kanasaki, K., et al. (2016) A Very-Low-Protein Diet Ameliorates Advanced Diabetic Nephropathy through Autophagy Induction by Sup-pression of the mTORC1 Pathway in Wistar Fatty Rats, an Animal Model of Type 2 Diabetes and Obesity. Diabetologia, 59, 1307-1317. https://doi.org/10.1007/s00125-016-3925-4

  68. 68. Hasegawa, K., Wakino, S., Simic, P., Sakamaki, Y., Minakuchi, H., Fujimura, K., et al. (2013) Renal Tubular Sirt1 Attenuates Diabetic Albuminuria by Epigenetically Suppressing Clau-din-1 Overexpression in Podocytes. Nature Medicine, 19, 1496-1504. https://doi.org/10.1038/nm.3363

  69. 69. Ma, L., Fu, R., Duan, Z., Lu, J., Gao, J., Tian, L., et al. (2016) Sirt1 Is Essential for Resveratrol Enhancement of Hypox-ia-Induced Autophagy in the Type 2 Diabetic Nephropathy Rat. Pathology—Research and Practice, 212, 310-318. https://doi.org/10.1016/j.prp.2016.02.001

  70. 70. Forbes, M.S., Thornhill, B.A. and Chevalier, R.L. (2011) Proximal Tubular Injury and Rapid Formation of Atubular Glomeruli in Mice with Unilateral Ureteral Obstruction: A New Look at an Old Model. The American Journal of Physiology—Renal Physiology, 301, F110-F117. https://doi.org/10.1152/ajprenal.00022.2011

  71. 71. Li, L., Zepeda-Orozco, D., Black, R. and Lin, F. (2010) Autoph-agy Is a Component of Epithelial Cell Fate in Obstructive Uropathy. The American Journal of Pathology, 176, 1767-1778. https://doi.org/10.2353/ajpath.2010.090345

  72. 72. Xu, Y., Ruan, S., Wu, X., Chen, H., Zheng, K. and Fu, B. (2013) Autophagy and Apoptosis in Tubular Cells Following Unilateral Ureteral Obstruction Are Associated with Mitochondrial Oxidative Stress. International Journal of Molecular Medicine, 31, 628-636. https://doi.org/10.3892/ijmm.2013.1232

  73. 73. Koesters, R., Kaissling, B., Lehir, M., Picard, N., Theilig, F., Gebhardt, R., et al. (2010) Tubular Overexpression of Transforming Growth Factor-beta1 Induces Autophagy and Fi-brosis But Not Mesenchymal Transition of Renal Epithelial Cells. The American Journal of Pathology, 177, 632-643. https://doi.org/10.2353/ajpath.2010.091012

  74. 74. Livingston, M.J., Ding, H.F., Huang, S., Hill, J.A., Yin, X.M. and Dong, Z. (2016) Persistent Activation of Autophagy in Kidney Tubular Cells Promotes Renal Interstitial Fibrosis during Unilateral Ureteral Obstruction. Autophagy, 12, 976-998. https://doi.org/10.1080/15548627.2016.1166317

  75. 75. Bellomo, R., Kellum, J.A. and Ronco, C. (2012) Acute Kid-ney Injury. The Lancet, 380, 756-766. https://doi.org/10.1016/S0140-6736(11)61454-2

  76. 76. Zuk, A. and Bonventre, J.V. (2016) Acute Kidney Injury. Annual Review of Medicine, 67, 293-307. https://doi.org/10.1146/annurev-med-050214-013407

  77. 77. Linkermann, A., Chen, G., Dong, G., Kunzendorf, U., Krautwald, S. and Dong, Z. (2014) Regulated Cell Death in AKI. Journal of the American Society of Nephrology, 25, 2689-2701. https://doi.org/10.1681/ASN.2014030262

  78. 78. Periyasamy-Thandavan, S., Jiang, M., Wei, Q., Smith, R., Yin, X.M. and Dong, Z. (2008) Autophagy Is Cytoprotective during Cisplatin Injury of Renal Proximal Tubular Cells. Kidney International, 74, 631-640. https://doi.org/10.1038/ki.2008.214

  79. 79. Yang, C., Kaushal, V., Shah, S.V. and Kaushal, G.P. (2008) Autophagy Is Associated with Apoptosis in Cisplatin Injury to Renal Tubular Epithelial Cells. The American Journal of Physiolo-gy—Renal Physiology, 294, F777-F787. https://doi.org/10.1152/ajprenal.00590.2007

  80. 80. Jiang, M., Liu, K., Luo, J. and Dong, Z. (2010) Autophagy Is a Renoprotective Mechanism during in Vitro Hypoxia and in Vivo Ischemia-Reperfusion Injury. The American Journal of Pathology, 176, 1181-1192. https://doi.org/10.2353/ajpath.2010.090594

  81. 81. Cheng, H., Fan, X., Lawson, W.E., Paueksakon, P. and Harris, R.C. (2015) Telomerase Deficiency Delays Renal Recovery in Mice after Ischemia-Reperfusion Injury by Impairing Au-tophagy. Kidney International, 88, 85-94. https://doi.org/10.1038/ki.2015.69

  82. 82. Takahashi, A., Kimura, T., Takabatake, Y., Namba, T., Kaimori, J., Kitamura, H., et al. (2012) Autophagy Guards against Cisplatin-Induced Acute Kidney Injury. The American Journal of Pathology, 180, 517-525. https://doi.org/10.1016/j.ajpath.2011.11.001

  83. NOTES

    *第一作者。

    #通讯作者Email: wangke6910@163.com

期刊菜单